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CHAPTER 1: SPACE PROPULSION SYSTEMS

1,1  Rocket Propulsion Fundamentals

A rocket i a device which propels a vehicle by expelling mass. In
space, where aerodynamic forces are negligible and where solar radiation pressure
forces nre assumed to be negligible, the equation of moti’ox;of a rocket powered
vehicle is given by Bq. (1.1),

mr - me¢ + mg

In this equation m is the mass of the vehicle, r is the position veetor. ¢ is the
exhaust velocity vector of the rocket, g is the gravitational acceleration, and m
is the rate at which mass is expelled from the rocket. The rocket exhaust is
assumed to be uniform in direction and magnitude. This oquatién gives the proper
form of Newton's law for a variable mass body whose loss of mass is solely

through a uniforin rocket exhaust stream, The thrust of the rocket is defined

by Eq. (1.2),
T = mc,

and since the rate at which the vehicle loses mass is negative, the thrust will be
dirccied opposite to the exhaust velocity vector of the rocket.
For elecetrically propelled vehicles, a quantity of some importance is

ithe power in the exhaust stream since this power must be supplied {rom a power

(1.1



source. The exhaust stream power is given by Eq. (1.3) for a uniform exhaust

siream,

2 T 2m _ ‘ (1.3)

Throughout this monograph, we shall be attempting to minimize the mass of fuel
consumed hy the rocket, It is therefore important Lo have an expression for the

rate atl which mass is lost, This expression is given in two alternate forms by

Eq. (1.4).

2D | (1.4

The rate of mass flow is proportional to the first power of thrust for a rocket
with constant exhaust velocity and is proportional to the second power of thrust
for a rocket with constant power. It is inversely proportional to cither cxhaust,
velocity or power, hence it is desirable to have high exhaust velocity or high
power in rockets. Instead of exhaust velocity, rocl;ct engincers normally speak
of a quantily called specific impulse which is most conveniently defined as the

exhaust speed divided by the standard acceleration of gravity, Eq. (1.5).

Specific impulse is normally measured in units of scconds.
The variation of thrust with mass {low rate for the two types of rockets

is shown in Figure 1.1, 1t should be noted that the curves cross at two points,
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at the origin and at some finite thrust. Many rockets cannot be operated at
.
various thrust levels but can be switched on and off, Such rockets may be con-

sidered as having cither the same power or the same exhaust velocity at their

operating point and when they are switched off.

1.2 The Spectrum of Space Propulsion Systems

Any rocket engine may be characlerized by two important quantities
which affect vehicle performance: the ratio of thrust {o engine weight for the
rocket and the specific impulse of the rockel, The 'utiq of thrust to engine
weight is a measure of the nﬂass of the engine required for a given thrust level,
while the specific impulse gives a measure of the fuel required fvor various mis-
sions. The possible variations in these quantities for space propulsion systems
are surprisingly wide, fallihg basically into two different areas. A plot of the
ratio of the thrust to engine weight (at standard gravity) versus specific impulse
is chown in Figure ].é'for some of the more conventional types of rockets. All
the way up in the left-hand corner of the figure, there is a block representing
chemieal rockets, Chemieal rockets have large ratios of thrust to engine wcig'hl.
The engines weigh very little for the thrust they produce, but they also have rela-
ti§ely low specific iinpulses. There are three major types of chemical rockets:
those using liquid propellants which are stored in a tank and burned in a rocket
engine, those which usé solid propellants where the propellant tank is also tlm;:

thrust chamber of the engine, and those using both liquids and solids where the
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solid propellant is again stored in the thrust chamber while the liquid propellant-

~

~
is stored in a separate tank, Liquid propellants tend to offer higher performance

than solid propellants, having both higher specific impulses and gencrally lighter
overall system wcigﬁt (including both tanks a:nd engine)., Solid propellants’ do
have advantages $uch as storability, density; and economy which mal%c them
desirablc‘for some missions. Hybrid rockets using both solids and liquids have
not been developed very extensively yet but do give promise of fairly high specific
impulses and may be promising for some nli.sa_‘-ions. Only '1i€1'u'i‘c’1/ rockets have been
shown in the figurc as it ddcs not inchude tankage weights,

‘Liquid rockets used today with hydrogen-oxygen propcil:mts are pro-
ducing specific impulses of approximately 430 seconds and some more :.1dvnnced.

systems have been proposed which may produce speceific impulses on the order

of 500 scconds., Nowever, it does not scem likely that chemical rockets may

produce performance much in excess of this if stable chemical specics are used,

Liquid and hybrid chemical rockets may be designed so that they can

-

be throttled, In this case, ithe engine can have any thrust varying from some
maximum thrust down to some fairly low value. This throtiling takes place essen-
tially at constant specific impulse,

Because chemical rockets have relatively low specific impulse, a
number of higher specific impulse devices have been proposed and some are under

development, None of these, however, has yet reached the application stage for

wrimary propulsion. One such scheme is the solid-core nuclear rocket shown




by a bl(ycl{ next to the chomic‘ul rockel. These roskets utilize hydrogen exhousted
tbroﬁgh a very high temperature nucfear reactor operating near the material
limits of gTupﬁite or fungsten and énn produce specific impulses on the order of
800 scconds, about twicc‘that obtainable witl; chemical rockets, This large im-
provement in specific impulse is obtained aé the expense of some increasc in
bothbcng‘ine and tankage weights for this type of rocket, but they are advantageous
for ma‘ny» missions and there is a current project to develop a solid-core nuclear
rocket, "Like chemical rockets, nuclear rockets may be designed to be throttled
and may do this at essénti,al_ly constant specific impulse,

Both chcmical rockets and solid-core rockets are considercd to be high-
thrust devices that can be used for taking off from the surface of plancts. They
can pro{ride high enoug'h accelerations so that the rocket vehicle performance may
ofteﬁ be approximated by replacing the finite burning time of these rockets by_ an
impulse which requires zéfo time. Their pripmry limitation is cxhaust velocity,
Because of their throttling characteristics, .they will be referred to s constant-

exhaust-velocity rockets throughout this book.

Rum*ning along the bottom of Figure 1.2 is a class of electric propulsion
systems which operate at much higher specific impulses than the high-thrust
chemical and nuclear rocket systems, but also have orders of maé;nitudc larger
engine weights for a given thrust. These devices can only be used in orbit,

Their thrust is very much smaller than local gravity for close planctary orbits

and their whole mode of operation in a space mission is quite diffecrent. In a




chemical or nuclgar rocket, the powcrgd flight time is on the order of minutes
or hours whereas ()1“ an cleetric propulsion system the powered flight time is
on the order of months or years and generally constitutes the majorily of the
total mission time. An electric propulsion system is a combination of power
source and suitable power conditioning cquipment with a thrust producing device
or thrustor. The same types of thrustors might be used with different types of
power sources and vice versa. A great varicty of thrustors have been proposed
and some of these have been developed to an operational state. The only currently
operational thrustor types arc resistojets which have relatively modest specific
impulses of up to 800 scconds. Another highly developed Lyf)é of thrustor is the
ion rocket whfch operailes (‘ff‘icientl_v at specific impulses above 3000 scconds, A
number of other devices such as arcjets, MPD ares and various plasma devices
have been proposed and some of these are under development., Most of these

. engines énn be operated only at or near a dcéign point and cannot vary thrust
cffectively. It would be desirable to develop thrustors which could operate effi-
ciently over a wide range of specific impulses atl essentially constant power.
This can be approximated to some extent by earrying several thrustors on a

, ;
given pbwcr supply and switching {from one to the othcr‘.
It will be noted that the thrust-to-weight ratio versus specific impulse

for these ciectric propulsion devices is inversely proportional to the specific

impulse and this is a simple consequence of Eq. (1.3) of the last section. The.

weight of an cleetrie propulsion system is primarily in the power supply and as




“ 0 the specific impulse is raised, the thrust must be decreased in order to keep the

JR Y VIOV T FYRCIY TR RICHR NIRRT IN TN PORRTL UREIGTH I R

cpower constani, Most early studies of electiric propulsion considered nuclear-

- ey

electric power supplies. These are devices which take the heat from a nuclear
-, reactor and convert it in some fashion or another to electricity. At the moment
there is ro active program in this country to develop a nuclear-electric power

o ii’éupply which would be suitable for clectric propulsion and attention has switched

b s I . bl

" _to solar-electric propulsion systems. There are many possible ways of converting

sclar energy into eleetricity, but the most widely used und the most successful

L LAl

- of thesc has been the photovoltaic cell, Unlike the nuclear-electric systems, the

1l |‘Ln“‘b

power of « sular cell system is a function of distance from the sun, In addition,

the galar cell array must be in full sunlight and properly oricnted towards the sun

L

in order to develop full power. The power developed is not an inverse square

il

function of disiance from the sun because as the temperature of the cells changes,

their cfficiency varies, A typical curve for power as a function of distance from

- --the sun is given in Figure 1. 3.

A great varicty of other propulsion devices has becn proposed, Among

these arc solar heated rockets, radioisotope rockets, liquid core nuclear rockets,

e

gaseous core nuclear rockets, nuclear pulse rockets and solar sails, With the
exception of the last device, these are all rockets and may be treated by the methods
to be developed in this book., The solar sail is a somewhat academic system which

is easily treatea by the general principles to be illustrated in this monograph.

[
I




Fig. 1.3 Solar Cell Power Variation
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1,3 DIayoll Functions

The payolf, the thing that we shall be trying to minimize, is the total

fuel used and is given by integrating Eq. (1.4) to give Eq. (1.6),

Two forms of this equation are given: one applicable to systems with constant
- ;thaust \'eluc;'.y and onc applicable to the power-limited elcctric propulsion
systems. For somc purposes it is convenient to use alternute forms for these
payoff functions, particularly for the idealized cases where the engines will have

variable thrust. If we have a constant exhaust velecity system, Eq. (1.4) may he

integrated by dividing through by the mass to form Eq. (1.7).

1
mo tf
cin =3 =[ =dt= AV
m o ™

The logarithm of the mass ratio of the system, a monotonic function of the fuel
used, is proportional to the time integral of the thrust acceleration of the vehicle,
This quantity is spoken of as characteristic speed, or velocily increment, or by a
great variety of other names and will be used frequently, It is possible to use
this payoff function instead of the fuel used as it is a monotonic function of the
fuel used. The characteristic speca may be interpreted physically as the change
in velocity that would be produced by thrusting in a single dircction in the absence

of a gravity field. Without gravity, the change in speed would be independent of

11

(1.6

(1.7)



the acceleration program. Alternately, the charecteristic speed may be locked
upon as the sum of the absolute magnitude of the velocity increments that would
be produced by impulsive thrusting in a gravity field,

It should be noted that the characteristic speed can he made much larger
than the exhaust velocity. If the final mass could approach zero, the character-
istic speed would approach infinity,

For & powver-limited syvstem, the corresponding quantity is found by

dividing Eq. (1.4) through by the square of the mass to produce Eg. (1.8).

- 1
: AN S S S
m!  m0 0 2 r

2
AR TSR

3|~

This integral has never acquired a popular name and is generally known as J,

The important thing here is that another monntonic function of the mass of the

vehicle is proportional to the square of the thrust acccleration so that for a

power-limited vehicle it is desiruble to minimize the time integral of the square
of the acceleration, whereas for a constant exhaust velacity system, it is desir-
able to minimize the time integral of the acceieration itself,

It was mentioncd in the first section that a rocket that can be switched
; on and off and has only one operating point can be regarded as cither a constant

power or a constant exhaust velocity rocket. Either type of pavoff may be used

for such a rocket. In fact, in this case therc is the following simple relation

between the two payoff variables.

(1.8)




0
P - /c
J = —-3 CAV "1 ] (1,9)
: m
E
1.4 Mass Relations for Exhaust-Veloeitv-1.imited Svaiems
3 The total mass of the space vehicle is assumed to consist of four typus
of mass: payload, powerplant, strucwure and fucel (or propeliang)
mO=m +m_+tm_+1m (1.10
1. P S Oy :
© " The powerplant mass and part of the structure muss is assumed to be proportional
to the maximum engine thrust,
+ = f
my mSP kl max (1.11)
! The remainder of the siructure mass is assumed to be proportional to the mass
of propeliant,
Mep = k2 m. (1.12)
The ratio of the payload mass Lo the initial mass is then given by Eq. (1.13).
m m
L { j O
—_— = 1 —_— + —_—
0 k1 o (1 kz) o (1.13)
m m m
13
i
b — .
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By using Eq. (1.7) of the last section, Eq. (1.13) may be put into the desired form,

Eq. (1.14},

m

Lo o AVie 1.
0 = (1 + l\z) e - U\l 0 + }\2)
m m

This equation presents the relauonship between the payload that can be cavried

and the pavoff variable, chavacteristic speed, for a single-stage rocket,

. iquation (1, 14) is plotfed in Fig., 1.4 for several values of the tankage faclor, k2A

Typical values of kz would be about . 05 for typical propellarts of about the density

- of water and about 0.1 for hydrogen.

1.5 Mass Relations for Power-Limited Svsicms

The constittent masses of a power-limited roacket are assumed Lo be the

same as those of an exhaust-velocity-iimited rocket and are again given by Eq. (1, 10},

As before, the powerplant mass and the structure reguired fo support the power-
plant are assumed to vary in the same way. 1In this cas:, they are assuned to he

proportional to the power in the exhaust beam of the rocket.

By combining kq. (1.18) and (1. 1%), the followirg el lionship Yor the mass of (he

vehicle is obtained,

14

] g

(1. 15




¥ig. 1.4 Single Stage Payload

15




given value for cxhaust beam power and powerplant mass. In this latter case,
and only in this latter case, it is possilble to optimize the mass distribution in
the stage independently of the trajectory.

TFor the idealized power-limited rocket, having fully variable thrust,
the value of J in Eq. (1.17) will depend only upon the particular mission and will
be independent of the vehicle design. If the relationship between powerplant mass
and exhaust-beam power is given by Eq. (1.15), Eq. (1.17) may then be optimized
with respect to the powerplant mass. This may Le done by simply differentiating
Eq. (1.17) with respect to powerplant mass and setting the results equal to zero.

The optimum mass distribution for a given value of the payoff, J, is then given

*
m
—IO-) = ,/(1+l;2) aJ - ad LTl

m

* . _
0 v 1+k .
m 2
- * — — — — -
™
—?" = 1-2 ./(1+}<2) aJ + aJ
Vrn

17




1.6 Control Variables and Parameters

A control variable is a variable which may be manipulated so as to

control the trajectory. ‘This may be expressed symbolically as Eq. (1.22).

= f(x,u,t) (1.22)

&8

a fairly general control problem and includes Eq. (1.1) as a special case. For a
vehicle, the control vector. u, is used to control the acceleration of the vehicle.
Examples of control variables are throttle setlings, thrust magnitudes, and thrust
“'directions. The number of control variables may be greater or smaller than the
dimensions of the acceleration vector. An example of the former is where there
may be muitiple engines, each with its own control variables. An example of the
latter is a rocket which is controlied in three dimensions by a constant magnitude
thrust at right angles to the radius vector. Only one control variable, a gimbal
angle, can control all six components of position and velocity in an inverse square
field.
Where the number of control variables is greater than the dimcnsion of
the acceleration vector, it will generally be possible to reduce the number of con-

trol variables by carrying out a partial optimization. This partial optimization

will maximize the acceleration for a given rate of fuel consumption or, equivalently,
q 3

18
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1 1 AR

LU —_— (1.16
S
P
The fuel mass and the payload mass are then given by Egs. (1.17) and (1. 18).
m’ - - - - 3
—_ g
Zr o Te L1 A
0 0 s -
P =
+ 7 .
i s s 2N - .-
0 0 " o 2 (.19
m 1+0 ay m
Mp

These cquations are perfectly general and apply to rockets with either fixed or R "*‘f
variable thrust. Equation (1.17) shows that, for a power-limited rocket, the fuel

consumption depends upon the mass of the powerplant. It is possible for such )

rockets to decrease fuel mass by increasing powerplant mass. In general, there
will be some optimum tradeoff between powerplant and fuel mass which will maxi-
mize pavload for a given mission., For a fixed thrust rocket, it is necessary to -
carry out the optimization of the vehicle design and the frajectory design simul-

taneously. In this case, the value of J will depend upon the maximum acceleration

availaible which will depend upon the powerplant mass. However, for a variable

thrust rocket, it is possible to follow any required accceleration program with any




praline

L, il

*“The control variables will be taken as the magnitude of the thrust. The thrust of

minimize the rate of fuel consumption for a given level of acceleration. An in-
structive example of this partial optimization is where a power-limited rocket
and an exhaust-velocity-limited rocket are used in parallel. 'The total mass

flow rate will be the mass flow rate of the two rockets.

2 2
) f, § Yy Y
Smees Yt T T,

©1 2 1 2

each engine will be assumed to be variable from zero up lo some maximum value.

- 0= < f
0= ul 1 max

2 N f2 max
>
f2 max pz/cl

The total thrust will be the sum of the thrusts of the indi“idual engines,

{f = f1+f2 Uty

This equation may be used to eliminate one of the control variables and to cxpress

total mass flow rate in terms of the total thrust and the other control variable,

2
- e = o .2
c1 2P2
19
A

(1.24)

(1.25)

i
1

R TR
Lk

Lt

WATE

(1.23)

(1.26)

(1.27)

(1.28)

[




The mass flow rate as a function of u2 has a single maximum which is easily found

to be given by Eq. (1.29),

*~P2—f" (L2
“2“c1“2 .29

The exhaust velocity at this optimum operating peint of the power-limited-rocket

is exactly twice the exhaust velocity of the exbaust-velocity~limited rocket,

, 2P, N
G =T T E¢ o | S (1.30)
21 o A

With this relationship. it can be secen that there are three different regimes of

operation for the two engines in parallel (sce Fig. 1.5, In the first cegiime, for -7

small thrusts. only the powcr-limited rocket is vtilized. ] S
0 g2 n 1.51
< & — . m — A
c 21, { 1)
1 2 S
In the second regime. for intermcdiate thrust levels, the pover-limited rocker is L

used al this optimum operating point and the thrust of the exhaust-velncity-limiieq

rockel incrcases from zere to its maximum value,

P P
sfg-—2+f _r'n=-f—_
c c

1 1 max 1 2¢

)
™

(2]
Pt
s

In the third regime, the exhaust-velocity-limited rocket has reached its maximum
value of thrust and the thrust of the power-limited rocket is increased to meet the

total required thrust,

20
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L f1 ma (-1, )2
—= 4+ f <fef +f -m = L il (1.33)
c1 I max 1 max 2 max c1 2P2

The first and third regions are examples of regions in which the maximum occurs
at a boundary of one of the control variables, in this casc, the thrust of the
exhaust-velocity-limited rocket. In region two, we have a stationary maximum
for the second control variable, the thrust of the power-limited rocket.

There are many possible formulations for the control variables for a
given rocket propulsion system. As further examples of such formulations, some
of the propulsion systems of Section 1.2 will be considered. 1In general. it will be
assumed that the engines are gimbaled so that the thrust may be pointed freely in

any direction. The controi vectar will be taken to be the thrust vector of the vehicle.

f = u (1.34)

Then the mass flow rate may be taken to be a function of position. time, and the

magnifude of the thrust.

m = m(r,tu) (1.35)

For a chemical or nuclear rocket, the mass flow rate will be given by kq. (1.30).

while the control variable will have a bound on its absolute magnitude.
(1.36)

fmax (1.37)




b

If the nuclear rocket derives its source of heat from isotope decay rather than
frem & reactor, the decay of the isolope will produce a continuing decrease in

the amount of power available, so that thc maximum value of thrust will be given

by Eq. (1.38).

0
(=0 Kt)
max

For an idealized nuclear-electric rocket, the mass flow rate will he

given by Eq. (1.39).

In this case, it will usually not be necessary to set an upper bound upon the magni-

tude of the thrust as large thrusts will be undesirable hecause of their exorhitant

fuel consumption.

lul RS- -

If the rocket is a solar-electric rocket rather than a nuclear-electric rocket, the

available power will be a function of distance from the sun.
P = P(r)

For practical engines, where the engine may only operate at a single design point,
the magnitude of the control vector may only have cwo discreet values. In this

case. the equations for the mass {low rate will be the same {or a chemical rocket,

23

(1.38)

(1.39)

(1.40)

(1.41)
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a nuclear rocket or a nuclear-clectric rocket,

m -M (1.42)

ful =0, f (1.43)

A somewhat idealized version of a practical solar-eleciric rocket may be repre-

sented by Eqgs. (1.44) and (1.45) .

m = --LEJ- | (1.44)

C

lﬁl - ZP‘)')
(o]

(1.45)

In this case, the rocket is assumned to be capable of using all the available power

at constant exhaust velocity.

In addition to control variables, the problem may also contain a fixed

vector of control parameters which do not change their values with time. The

control problem is then represented by Eq. (1.46), where { is the vector of

conirol parameters,
d _ 3= =7
— = f(x,u,4,t 1.46
o - ) (1.46)

This problem arises when we wish to consider the optimization of the vehicle and
trajectory for a given space mission, such as the determination of the maximum
payload which can be curried by a fixed-thirust nuclear-eleciric rocket on a given

mission. 1n this casc the powerplant size, which will determine the value of the
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fixed-thrust level. would be one of the parameters of the problem. In the same

example. the exhaust velocity of the rocket might be another parameter Lo be

oplimized.
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CHAPTER 2: THE MAXIMUM PRINCIPLE

2.1 Extrema of Functions

The problem of maximizing or minimizing a function is basic t o ail
problems in space trajectory optimization, The word "extremum' is used to
indicate a maximum or a minimum without specifying one or the other. The

problem to be considered in this section is to maximize a scalar function y of

a conirol vector u.
y = f(u) 2.1)

The control vector u is assumed to be contained in a closed domain U. If y
is a continuous function of u, then the theorem of Weierstrass guarantees that
the function y always contains both a maximum and a minimum.

"Every function which ie continuous in-a closed domain, U, S

of the variablcs possesses a largeét and a smallest value

in the interior or on the baundary of the domain. "

If the funclion is differentiable and the maximum or minimum occurs
at an interior point, then the partial derivatives of y with respect to each com-
ponent of u must vanish. Such a point where the gradient of y vanishes is
spoken of as a stafion:xry point. While an interior maximum or minimum of a
differentiable function must occur at a stationary point, a stationary point need

not yicld an extremum. For example, the stationary point may correspond to a
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saddle point where both greater and smaller values of the funetion occur in the
near vicinity of the point, A one-dimensional éxample of a saddle point would be
a point of inflection where the first and second derivatives of y with respect to
a scalar u would vanish, I y possesses second partial qui\rati.\res, then the
second partial derivative matrix would be indefinite for a saddle.‘point, positive
definite for a minimum, and negative definite for a maximum. In general, thesc
extrema would only be local ‘extrema: thaf is, extrema within some subdomain of
U rather than with respect to all of U.

“The extrema of the function y may als§ occur on the boundary of U
or .ﬁt "corners'" where y does not possess partial derivatives with respect to u.
The theorem of Weierstrass also applies to the boundary of U, which is a lowér
dimens_ional subdomain of U. For example, if the domain U is a 3-dimensional
pdlyhedron. stat‘i.on>a"ry extrema must be sought within the interior of U, on the
faces of the ])ol,\'hqdron, and on the edges of the polybedron. In order to deter-
mine the absolute extrema of y in such a d.omain (if y has continuous first
partial derivatives), all of these stationary extrema must be considered and
compared with the values of y at the vertices of the polyhedron. If y isa
linear function of U, there will generally be no stationafy extl*erné‘and the ex-
trema must occur at the vertices of the n-diniensionnl polyhedron. This is the

basis of linear programming,.

27




UL T, T S e

2.2 The Optimai Cuontrol Problem

An haportant class of gptimal control problems is to maximize the

final value of the pavoff variable x_ subject to the differential Eqs, (2.3) with

0

the control vector u contained in some closed domain U.

X, = min, (2.2)

dx = -
E{‘ = f(x,u,t) (2.3)

The initial and final times are specified as are the initial and final values of the
state x. This problem is a generalization of the elementary problem considered
in the previous section. The cost, or pavoff, xtl) «epends on the complete time
history of the values of the control vector u, rather than upon its value at any
one time. The payoff variable is what is called a functional as it depends upon
a continuous sequence of values of the vecter u,

This problem is much more difficult than the e¢lementary problent con-
gidercd in Section 2.1 and far less is known about its sclution. There is nogeneral = 777
existence theorem corresponding to the theorem of Weierstrass and the sufficiency
theorems thai have been developed are gencrally difficult to use and are of limited o

applicahility. There is a satisfactory theory concerning necessary conditions for

this problem and this theory is the basis of the analysis in this monograph.
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2.3 The Maximum Principle

The maximum principle is a necessary condition for a maximizing

solution of the optimal control problem considered in the previous section, Any

solution which does maximive the pavofi x must satis{y the maximum principle.

0

- ---However, solutions which satisfy the maximum principle may not be maximizing.
A solution which does satisfy the maximum principle will be referred to as an
T~ =extremal.
The maximum principle is stated in terms of a Hamiltonian defined by
_Eq. (2.4).

H = HGL A, U, t) = A T(x, u, t) . (2.4)

The vector ) is a vector of Lagrange multipliers of the same dimension as the
state veclor x. There is one component of this veetor for each component of the
state vectar. The differential equations of motion and the diffecrential equations

governing the I.agrange multipliers arc given by the canonical Lgs. (2.5) and (2. 6).

i _ 8H -
a ali i 0, 1, , n (2.5)
& z__a_,l_l' i =01 ..., n (2. 6)
dt axi

These equations are often stated in the equivalent vector form (2.7) and (2. 8).
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dx _ 3H

dt ~ ax .7
dy _  3H

dt ~ T ax (2.8

The maximum principle of Pontryagin states that the Hamiltonian H of
Eq. (2.4) must be maximized with respect to the value of the control vector u
contained within the closed domain U at all titnes from to to ll. The maximum
principle reduces the optimal control problem to an infinite sequence of maximiza-
tion problems in Euclidean space and to a 2-point boundary value problem. The
‘maximization problem is the problem of maximizing H with respect to u at each
time. ‘The 2-point houndary valuc problem is the problem of determinin,s the initial

“wvalues of the Lagrange multipliers )\,l that will cause the extremal to go to the

correct {inal state.

Equations (2. 6) are a set of linear homogeneous equations in the Lugrange
multipliers Xi' These equations are adjoint to the lincarized variational equations
of Egs. (2.5). A natural scaling of this homogenecus system of equations will be

chosen by taking the terminal value of the Lagrange mulliplier associated with the

cost Lo be unity (Eq. (2.9) ).
A, =1 2.9

Becausc the Lagrange multiplicrs are adjoints to the linearized equations of motion.
and heeause of the scaling used in Eq. (2.9), they may be interpreted as influence

functions for the cost and obey the relationship of Eq. (2.10) at all times.
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A - =2 i=01.,..,n (2.10)

The Hamiltonian itself is the negative of the influence function for time and obeys

Eq. (2.1)1).

The system of equations of Egs. (2.5) and (2. G) also posscsses a first integral

which gives the value of the Hamiltonian at all times (Eq. (2. 12) ).

,,,t, 1

t

_gt o2

H( = H - > dt (2.12)
t

- wlf the system is autonomous, i.e., the functions ti are independent of time, then
“this integral will be a constant of the motion.
If all the maxima of H with respect o u are stationary maxima, then
the optimal control problem is reduced to a problem in the classical calculus of
variations. This classical theory possesses a more satisfactory and useful theory

of sufficiency conditions than has yet been developed for the more complex optimal

control problem,

2.4 Control Parameters and Free Boundary Conditions

The problem considered in Section 2,3 may be generalized somewhat by
assuming that the boundary conditions are not {ixed but may vary over some ter-

minal hypersurface. This problem may also be generalized by assuming that [




may depend upon a constant vector of control parameiers X . This makes the

Hamiltonian a function of four vectors and time.

For any given set of values for the control vector L, the cost may be computed by
solving a standard optimal control problem. The cost may then be represented as

a function of the boundary conditions and the parameter vector, Eq. (2.14).

1  1-0 -1 0 1 -
xo—xo(x,x,t,t,t)

The problem of determining the optimal values for the boundary conditions and
the parameter vector has now been reduced to 1 problem in the theory of extrema
of functions. If the cost given in Eq. (2. 14) is differentjable, then a set of trans-
versality conditions may be derived which determine the optimal values for the
boundary conditions. For example, if the initial conditions are fixed and the ter-
minal conditions arc variable, then the variation in cost due to variations in the

terminal conditions must be stationary and will be given by Eq. (2. 15).

This equation must he satisfied for all variations which are consistent with the
terminal conditions. For example, if onc component of the terminal state is un-

specified, then by Eq. (2.15) the corresponding component of the Lagrange

(2.13)

(2.15)




ity

More generally, if the terminal

“multiplier must be zero. If the initial or final time is unspeciiied, then the

Hamiltonian 11 must be zero at that time,.
state must lic on some hypersurfuace in the space of the state variables, then

““function of time and the state.

the terminal Lagrange multiplier vector must be normal to the hypersurface.

Equation {2.15) may also be used where the terminal hypersurface is a specified

1
If the payoff xo is differentiable with respect to the parameter vector
K of

. then the following conditions must hold with respect to each component L

_the parametcr vector.
T : rtl »H
3 dt = 0 (2.16)
v o

This condition may be derived by considering each component of the parameter

vector as a new state variable whose derivative is equal to zero.

2.5 Sinpular Arcs
‘The maximum principle determines the optimal controi only if the

Hamiltonian H has a unique maximum value with respect to the control vector u

When H has two or more equal maxima, the problem beconics more combvlicated.
One important case arises when H is linear in onc or more components of u.

1f the cocfficient of the linear term is nonzero, the inaximum of H wiil occur

at the boundary of u, Mowever, if the coefficient is zero, then all values of that

component of u yieldg the same value of H and the maximum principle does not
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determine the control, This is the case in which singular arcs may arise. A
singular arc is a segment of an optimal trajectery of finite duration where the
control does not lic on the boundary and the cocfficient of the linear term in the
Hamiltonian is identically zero over the finite time interval.

If the problem is lincar in the state wnd control, then the singular arc

will arise when the solution is non-unique and may be rcplaced by non-singular

arcs having the same cost. However, if the problem is nonlinear in the state

x but linear in onc component of the control u, then singular arcs may repre-
sent all or part of a unique minimizing solution.

In practice it may not be possiblec to operate o control between iis maxi-
mum and minimum limits. Howcver, an approximation to such intermediate con-
trols may be obtained by operating the control alternately at its maximum and
minimum values. If this is done rapidly, a chattering approximation to the inter-
mediafe control is ohtained. Anyvtime that a Hamiltonian possesses two equal
maxima. chatltering may be used to connect the two maximma and the possibility

of a singular arc arises,

2.6 Impulsive Controls

Ll aen

If the Hamiltonian ic linear in a component of u  and this component
of u is unbounded. then a positive coefficient for this component in the Hamil-
tonian implies that the control should be infinite. The usual derivations of the

maximum principle do not hold for this case. However, the scope of the maximum
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principle has been extended so that this importan{ case may be treated. The

details of the results will be presented in the next chapter for the rocket problem.

2.7 Sufficiency

The maximum principle is merely a necessary condition for an extremum

~and its satisfaction is no guarantee that the solution to a particular problem has been

found. In special cases it may be possible to establish that there is a unique solu-

tion that satisfies the maximum principle. In these cases the maximum principle
will be sufficient for an extremum. However, in general, it is not possible to show
"~ that the problem possesses a unique solution. In fact, it is often impossible to

show that the problem possesses any well-behaved solution,

The only wayv by which one can determine absolute extrema is by calcu-
A V by A

lating all extremals and comparing their costs. There are a few techniques which

can sometlimes be usced to determine local exirema. If the control never lies on

a boundary, then the problem may be treated by the classical calculus of varia-
tions which possesses a local sufficiency theory based on the second variation,

This theory is a generalization of the local sufficieney theory for the extrema of

functions. If the controls do lie on the boundary for part of the solution, a more

general approach must be used. Such an approach 03 recently been developed
by Boltvanski for determining absolute extrema vithin a giz2n domain. Unfor-
tunately, this theory requirces the generation of the: complet families of extremals

in this domain. This is usually impractical if the staie vector x has more than

two companents in addition Lo the payoff.
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CHAPTER 3: GENERAL THEORY OF OPTIMUM
ROCKE'T TRAJECTORIES

3.1 Application of the Maximnm Principle

The equations of motion of a rocket moving in an arbitrary time-
varying gravitational field arc given by Eq. (3.1) of Chapter 1. This equation
will be re-written as two first-order equations, kgq. (3.1) and (3.2), so that

they will be the firsl-order form to which the maximum principle is applicable.

-1 + g (5t
™ g (r,t)

<

The rate of loss of mass of the rocket is assumed to be a general function of

position, time. and the thrust vector.
m o= (1)

This system of vector and scalar equations are the state equations for a general
rocketl traject ory optimization problem, They will form a fifth-order system for
planar flight in two spatial dimnensions and a scver th-order system for flight in
three spatial dinensions.

The Hamiltonian of this system is given by Fq. (3.4). This Hamiltonian

represents a Mayer formulation of the optimization problem. The vector A is

3.1

(3.2)

(3.3)

EPERr oy sy



adjoint 1o the velocity veclor. the vector ;z is ndjoint to the position vector. and

the sealar ¢ is adjoint to the scalar mass of the rocket.

- mwv,rm d, u 0,0,

control veetor, and the time. The differential equations {or the adjoint variables

_are given by Egs. (3.6), (3.7 and (3.§),

A A

= Al R SN am
M- TE T m A o " 93%
. AL X T

g - - 21

Because of the simple relationship hetween the adjoint vectors for position and

velocity. Fgs. (3.6) and (3.7) are often written in the second-order form given

by Eq. (3.9).

>0
"
1
3
-
Iw
=
-

The adjoint vecotr 2 plays an important part in the theory of optimum space

trajectories and is often called the primer vector, a name originally introduced

hyv Lawden.
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The maximum principle states that the Hamiltonian, Eq. (3.4), should
be maximized with respect to the control vector, in this case the thrust vector.
Only two of the terms in the llamiltonian are affected by the thrust so that the

maximum principle reduces to the maximization of these twd terms (Eq. (3.10)).
A f .
LA TUR-A ) =
- omn = max

Tiquation (3.10) is a general equation applying to a great many types of
rocket propulsion devices. Among these types are those where the thrust'magni-
tude must lie within a given time-varying set, and to the case where the thrust
magnitude is a fixed function of time, but the dir:ction may be {rcely varied.

;
The one important case not covered by Eq. (3.10) is where the maximum thrust
magnitude is a function of hoth position and time. This case can vbc conveniently

handled by expressing the thrust as the product of a throtile variable k, which

may vary from zero to one, and the maximum thrust of the rocket.

=k 1max (r,1)

As the thrust is now a function of the position vector r, the equation for the

primer vector, Eq. (3.9), must be modified as Eq. (3.12).

- ) af

T - g am k = max
= o =2 — e — ¢ —
AFASE 9% T A TR
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At this point it will be assumed that the engine may be rotated freely
in space so that the maximum thrust is not a function of direction and so that
the fuel flow rate depends only upon the magnitude of the thrust, In this case,

Eq. (3.10) implics that the thrust should be aligned with the primer veetor to

produce Eq. (3.13).

A\ . ' |
——— e = ax .
™ om max . (3.13) ’

;

This cquation may now be used to maximize the llamiltonian I with respect to

thrust magnitude as well as thrust direction. It is convenicent to re-write Eq. (3.13)

Cas Eq. (3.14).

£+ 228 5 - omax | . (3.14)

A

There are two important cases that arise depending upon the curvature of the curve

of thrust versus fuel flow rate. The two cases are illustrated in Figs. 3.1 and 3.2,

om .
f+ 200 =
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In the first casc illusirated in Fig. 3.1 the maximization of H will generally
lead to a stationary maximum point away {rom the boundaries on the thrust,

This case is characteristic of the idealized power-limiied rocket. The second
case illustrated in Fig. 3.2 always has a maxima of the llamiltonian occurring
al the maximum and minimum values of the thrust, The thrust is never operated

at intermediate values exeept in the particular casce wherc the thrust is a lincar

“function of the mass flow rate. 1t ic possible to approximate to a linear relation-

ship hetween thrust and maes flow rate for these engines by operating the engine
alternately for short periwls of time at both maximum and minimum thrust, a

process known as chattering. 1f ibe optimal trajectory coatains a singular arc,

such chattering behavior will form part of the optimal solution,

3.2 Constint Exhaust Velacity

—

In the particular cuse of a roehet with a constunt exhaust velocity, the

mass {low rafe is given by g, (3.15), where ¢ is o constant. Lguation (3. 14) is
L

then repluced by Lg. (3.16).

w this casce O - criteria for the magnitude of the thrust ave given by Jgs. (8.17).
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VIf the magnitude of the primer vector is greater than ¢ m/c, the thrust is turned

. ——on full throttle, If the magnitude of the primer vector is less than g m/c, the
engine will operate at its minimum thrust level, which will e taken to be zero.

“Finally. in the particular case of a singular arc the magnitude of the primer vector

 will remain equal to em/c along the are, and the vaiue of the thrust will lie be-

~tween its limits,

Impulsive Controls

It is interesling to deterinine what happens to Fgs, (3.17) if impulscs
are allowed. Using the results of Chapter 1, Yq. (1.7), ly. (3.4) may be re-

wrilten as Eq. (3. 1¢8).

The rate of change of the quantity may be determined from g, (3.19).

(3.17)

(3.18)




doem) _mdg , gdm _ gm
c

aav L La o @1
m m

When ). is less than gm/c, the thrust will be zero and the rate of
change of AV | will be zero so that there will be no change in the quantity om.
When )\ is cqual to ¢gm/e, the rate of change of ¢m with respect to AV,
given by Eq. (3.19), wili‘ be zero. During an impulsive thrust, the value of the
primer veetor and its first two time derivatives will not change. As a rcsultl. the
right-hand side of Eq. {3.19) will remain equal to zero during an impulsive thrust
and along a singular arc., This means that as long as the value of thrust is allowed
to vary hetween zero and infinity, the quantity ain/c will be a constant of the
motion. which may be taken as uhity.

The magnitude of the primer vector must be less than unity when the
rocket is turned off and must be equal to unity when the vehicle is powered, It
can never he greater than unity for an optimum trajectory. Si.'nc;‘é ‘tvlrle primer
vector and its firsi two time derivatives are contlinuous, all inﬁ)ulscs between
the initial and final times must oceur at local maxima of the primer vector. In
this case the primer vector and its derivative will be orthogonal and the last term
in Eq. (3.18) will not change across the impulse., The first term will be zero on
both sides of an interior impulse and may be defined to be zero during such an
impulse. As a result the Hamiltonian for the constant exhaust velocity problem

with unconstrained thrust may be taken as in Eq. (3.20),




I

e

This equation will not apply during the terminal impulses where the Hamiltonian
will not be defined. It will apply in the open interval from the initial o the ter-

niinal time,

3.4 Power-Limited Rocket

In the case of a power-limited rocket where the power may be a function

;:of time and position, the mass flow rate will be given by Lq. (3.21).

Equation (3. 14) in this casc becomes Eq. (3.22).

om 2 )
23D f - max

This cquation is of the type illustrated in Fig. 3.1 and always has the stationary

maximum given by g, (3.23).

The equiation for the Lugrange multiplier for the mass, ¢@. is given by Fa. (3.24)

and the equation for the rate of change of mass is given by Fq. (3.25).
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(3.25)

32 p

m =
2
2g m
These equations may be combined to yield Eg. {3,26), which is readily integrated

to yield Eq. (3.27).
- g _ _2m
(o] m
2
2 0 0
em =g (m) (3.27)
The acceleration of the rocket is then given by Eq. (3.28) and the Hamiltonian by -
: Eq. (3.29).
i p
PN S ae
- > A (3.2¢&)
om
2 D -~ - 4 = 2 N
Bt iR E-X T aom® B (3.29)
om m :
As this is a homogeneous system, we may set the Lagrange multiplier :70 equal
to the value given by Eq. (3.30) to protace the Hamiltonian given by Fqg. (3. 31).
0 PO
o 53 (3.30)
(m)
2 P . - = o= dg]’o/nﬂ
=) == +x"g-x"\V - (3.31)
0 dt
P
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The quantity on the right may be recognized as equal to the quantitics given by
Eq. (3.32). This produces the final form of the Hamillonian H for the power-

limited problem, Eq. (3.33).

)
ap’m 12’ ¥ _a 2o
dt 2 F m  dt 2 PO

: 2
H=Xxg=-XxV +Lz-

1t should be noted that in both cases where there are no bounds on the

- - -thrust, the mass has disappeared from the problem. This is because for these

problems the thrust may be replaced by the thrust acceleration as a contro! vari-

-able. It should also be noted that Eq. (3.33) applies to an arbitrary time-varying

gravity field and to a power level that is an arbitrary function of time :nd position.

3.5 Summary of Results

From this point on this monograph will be primarily concerned with three
different trujectory optimization problems, The {irst problem, to be rcferrg‘-(.i to
as Problem C1, is concerned with minimum fuel trajectories for a constant .cx—
haust velocity rocket having a fixed bound on the maxinmum thrust level. In general,
the thrust level will he assumed to be variable, but in the special case of minimum
time trajectories the thrust will be assumed to be fixed at its maximum value, In

such a case the minimum fuel trujectory is also a minimum time trajectory. The
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second problem, to be réferred to as Problem C2, will be concerned with a con-
stant exhaust veleeity rocket with no upper bound on the thrust magnitude. Here
the solution will consist of impulses andvcoasting arcs except in the exceptional
ca'se of singular arcs. The payoff to be maximized will be the negative of the
total velocity increment as the velocity inerement should be minimized. For this
problem minimum time {rajectories are meaningless as they require a consump-
tion of infinite amounts of fuel,

The third problem, tp be referred to as Problem P1, is the minimum
fuel problem for a constant power rocket with unbounded variable thrust. In
general, the power may be a function of position and time, although most results
will be for the constant power case. For ihis problem both minimum time and
time-open problems are not of interest becanse they corresp'oné fespectively to
zero time, infinite fucl consumption and infinite time, zero fuel consumption
solutions. Table 3.1 summarizes some of the pertinent characteristics of these

three problems.
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TABLE 3.1

Problem C1 C2 Pl
"~ “Exhaust velocity - ¢ constant mconst:mt variable
Maximum thrust level - fmax bounded unboundcd unbounded
Power level - P variable variable function of
- position and time
1 1
Payoff ~ Xy m -AV -J
Terminal value of 2
< . /1N
adjoint to mass - ¢ 1 c¢/m |
, 2
. . T = =, = * - o~ + = &£, = A D
Hamiltonian -~ H AigE~-XA"V Arg-x-\ Arg-xcV +-E-—d-
p
I/ gm
4 — - ——
m ‘\A C
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3.6 Doundary Conditions

This section will consider what cffcet various lyprs of boundary con-
ditions have on the tcrminal values of the Lagrunge multipliers for the three
problems defined in the previous scetion, Theuse beundary conditions will be
determined from the general transversalily condition, Eq. (2.13) of Chupicr 2,

Applying this transversality condition to the racketl trajectory problems of this

“chapter produces Eq. (3.34). This equation must be stationary for allewable

variations in the terminal conditions.

6x; = 1 8V -X ¥ -Hot

In the casc of interception trajectorics the terminul velocity at inter-
ception is unspecificd, Equation (3. 34) then indicates that ot interception all

three components of the primer vector must he zero (Eq. (3.35) ).

~1 -
A=

For timce fixed interception this cquiation must be satisficd {or ali thice problems —
C1, C2, and P1. Decause the primer vector is zero at the time of interception,
the thrust will be zcro at that time in all ecases. For time open interception the

terminal position will be a specilied function of time (Eq. (3.36) ).
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The variation in position due to a0 variation in interception time will then be

given by Eq. (3.37).
6r = Vtét

The stationary condition of Eq. (3.34) for this problem is given by Eq. (3.38),

- 1
-A°"6r = H §t

This equation yields a terminal value of the Hamilionian for problems C1 and C2

‘where usc has been made of the fact that the thrust is turned off at interception.

Equation (3.39) implics that the derivative of the primer vector must he perpen.-
dicular to the relative veloeity vector at interception, In the special case where
the target is stationary the Hamiltoninn must be zero at interception and the
derivative of the primer vector must be perpendicular to the veleeity veetor.
For minimum time interception only Problem C1 is of interest, LEquation (5, 31)

then yields g, (3.40), resulting in Egs, (3.41) and (3.42),

=z oot
0 = (=X V41X V- =)ot
L +.,%
c A (V=VY
- x-v
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The problewm of tinie {ixed rendezvous provides no freedom in the ter-
minal conditions so that no transversality coaditions may be imposed. However,
there arc scveral varinble time rendezvous problems of interest, It will be
assumed that the target vehicle is falling free!, under the action of gravity.

Its position und velocity are given by Egs. (4.43), while the variations in thesc

guantities urc given by LEgs. (3.44),
r = ft(t) V=V (1)

6T = V(0 8V = g (1)

“Applying Eq. (3.34) to this problem yvields Fa. (3.45),

N TLT L
MO—(A - X \t Mot

For the time open casc for Problem C1 the stationary condition of Eq. (3.45)

resulis in Eq. (3.46).

om
A [ Sy
C

This equation indicates that the thrust should cut off at the iime of rendezvous
and that a coasting arc should begin at that time, Applving Eq. (3.-19) to. Problem
CZ requires some care because the Hamiltenian may not be cefined of a terminal
impulse, Ilowever, L. (3.45) muy be used with the vidue of the Hamilzmian

immedintely prior to the impulee, resuliong in Eqg, (5,17,

1>

(3.43)

(3.44)

(3.45)

(3.1




-

i.(vt_\v) -__;:.K\—’ - 0 (3,“57)
This equation may be replaced by g, (3.48) as he primer veetor must point

in the direction of the tecrminal impulse.
AN =0 (3.14%)

This cquation indicates that the primer veetor magnitude must have a stationary
maximum at the terminal time., This in.plies that for (his problem as well as
Problem Cla consting arc must begin at ihe time of rendezvous.

The minimuin time rendezvous problem is only of interest for Problem Cl.

Applyving Eqg. (3.45) yields Eq. (3.49,

m
= — 3,49
A " ( )

This cequaticen is not very useful as @11 it does is determine a natural scaling for
the values of the primer vecter.
Arn interesting rendezvous problem occurs when the triunsfer time from
one body in free fall to ancther body in free fall is specified, but the time at which
the mancuver starts is not specificd,  This case is of interest for all three problems —
C1, C2, and 1. Applying Fq. (3.45) to these problems yiclds, respectively, Fgs.

(3.50), (3.51), and (3.52).
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C1 —— L1,
m (k

(3.50)
C2 XAV =-X:AV | (3.51)

p1 A (3.52)

Many of the interesting problems in space trajectory optimization are
problems of orhit transfer. In order to define such problcins, it is usually neces-
sary {o assume that the gravitational field is only a function of pééi&én and not of
tjme. This assumption will be made here. Such an assumption \\fill result in the
Hamiltonian being constant for Problems C1, C2, and those examples of Problem 1.
where the power is independent of the time. The variations in position and velocity
on the target orbit will be given by Eqs. (3.53),‘ where the variable 1 refers toa
fictitious motion on the target orhit and does not correspond to time on the actual

traicctory.

Tor time {ixed orbit transfer for Problem C1, Eq. (3.34) yields Eq. (3.54) which

will he true at both ends of the trajectory.

(3.54)




Becausc ihe Hamiltonian will be constant for this problem, liq

. (3.558) muay also
be obtained.

0
f / o nm t { 7 om\ tl
I = = - 2 PN = s ;
! m c m LA ¢ (3.79) :
For Problem C2 with time {ixed the variaciions in pasition and velocity will be
assumed fo be given by Egs. (3.50).
6t = (V4 AV)or 6V = gorT (3.56)
This results in Eqgs, (3.57) and (3.5%).
E
bx, = 0 =(X+g-x-VFX AV)o7 (3.5%)
0 1
t . i
= - ) AV = + X AV (3.5%)
For Problem Pi, Eqg. (3.51) 18 agoin obtained and if the power is not a function ]
of time, Eq. (3.59) may wlso be obtained,
0 1 E
2 it 2 t E
—- x — l p Fed 4 E
H =2 el (3.59) ,
2 2 p?
For timme open orkit transfer for Problem C1, Eq. (3.54) still holds
and, in addition, Eq. (3.60) holds, The Hamiitonian will be zc¢ro, 1
53
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(3. 60

The terminal times for this time open problem must represent the beginning of

coasting arcs.
For time open orbit transfer for Problem C2, Eq. (3. séf') must hold.

However, in this case, because the time is not specified, the Hamiltonian must

be zero. Therefore, Eq. (3.61) must hold, S \
A . A =‘ 0 : ; - . J/-'_'. . o (3. 61)

Once again, as in Problem C1, the terminal powered arcs must join onto coasting

arcs, ;
. . . . - : ‘;\.. S ‘ N e
For minimum time orbit transfer in Problem C1, Eq. (3.54) must -

I

hold and Eq. (3.62) must hold.
L X

As f or minimum time rendezvous, "‘th“isu prov1des anatur'wlsc'lhng f 019
multiplicrs. ”

. Another ixxtereéting proiqlcxn is the pfoblem ofr'rve':-lcl:lilylg ar glvcnencrg\
The encrgy iri\a tim;g: va‘rgi'ing graviit_f:tiohal ficigl m’xybercmesentcd’tsm
where U is the time varying g_rm’}yita»ti‘ony:il:i)oféi{tizil; s ’

s = Vz\- FURY e e - (3.63)
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For the time fixed problem the allowuble varintions in velocity and position must

satisfy Eq. (3.61),

gt. Y - 5+ 865 = 0 (3.64)

The change in cost from Eq. (3.34) is given by Eq. (3.85).

1 - - -

6x0'—>\'6\’-,\~ﬁr=0 (3. 65)
In order for Loth (3,64) and (3.63) to be satisfied, Eqs. (3.C6) must be satisficd.
]
- A = - A - :
x = T Vv X = 5 g (3. GG) E
\ t v %

t t
For all three preblemis the quantity on the left-hand side of Lig. (3.67) is cqual ]
to the right-hand side.
-, T S5 . A -, ..z T -
A'g - XV —\—,-g-(\-t—\') (3.067)
i

-;j
For both Problem C1 and 1 the velocity is continuous so thut both quantitics E
will be equal to zere. For Preblcns C2 the value of H will siot be werabut
will be given by the right-hand side of Eq. (3.67). It should be noted that the
terminal impulse for Problem C2 will he in the direction of the velocity vector ﬂ

so that \’t and V. will be colinear,
To consider the problem of reaching a given energy with variable

terminal time, it will e assumed that the gravitational polentiul is nol a function
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of time., For the ti.me' open problcm_'of reaching a given energy for Problcm‘ c1,
the transversality condltlons will rcsult in Egs. (3.606), ( .67) 'md (3 GO) I.‘or
Prohlem C2 the corresponding equauons will be (3. GG,, (3 67) 'md (3 61) This

implics that fo1 this p1 oblem, Eq. (.3 68) must be satlshcd
T.g = vo..xx o , : o (3. 68)

This equation has a simple, physic‘al in”{:crprctatiqh. 'Tiic ratevoff.change:Af‘,'c;v‘crg.\'
is pl-op()rti§nﬁl to velocity so that‘rthve terminal“ o%-bi:t n;QSt be entércd ut apomt |
where the \.reloci‘ty is a maXimumY'i\le.ie statiohars; condltlonf Qrz‘tlyvl‘is tobetrue |
is given bv‘FqQ (? §8), which will be' éétisficd‘af:-‘a‘njhps'e{ of ihe‘ Jtejrmi’ﬁél”dfb‘i\'t.

For mini mum time transfer to a gin en cncrgy level in P1 o‘:lcm Cl thc tranv-

o1

* versality conditions will 1esu1t in Eqs. (3. 66) (3 67 and (3 62)




CHAPTER d: TRAJLCTORY Ol’TIMI/A'I‘]ON
IN FIELD-FREE SPAC]‘

CogvenbyRq. ()

4.1 Integration of the Adjoint Equartions

If the mass flow rate of thé rocllcet"isl independént of position, then the
'1d1omt cquations become uncoupled from the equatxono of mot1 on for lme'lnzcd

p:ravlty fields. An 1mportant speci'xl case of such f1elds is fleld-flee space far

,,'\ o

from any massive body.

" In ficld-free space the differential equation for the primer ﬁréctor is

o

“This cqtiution is readily integrated to yield Dq _ (42)

X=X R0 )

The tip vl the primer vector moves along a straight linc at constant velocity,

This line may be spoken of as fhc locus éf 'fhé pi'in“‘{'ér i'ect‘dr; ‘Tlié pffmtn’

’v'ec‘to:r lw'\\ s lies in a plﬂne dctcnmned by the orlgm and tlus locus. B 'I‘hc

magnitudc of the primer vcctotj is given by Eq. (4.3).

, [0 <0 .-0. <0, 0 .0 0, o0z
VIR S U U U CITIRORS LR LD
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This (*quzltion represents a hyperbola which is concave upwards. Because of the
shape of this curve there will be, at most, one coasting are for Problem C2 and
cither one or two impulses, For Problem C2 there will be, at most, one coasi-
ing arc with either one or Lﬂvn thrusting a1;cs. If the final position is open, the
dcr);\':ltivc- of the primer veetor will be identically zero and the primer vector
will be constant in magnitude, This will be a singular case for Problems C1 and
C2, the thrust diveetion will be specified but the time of application and magni-

{ude of the thrust will be unspecified. [

4.2  Constant Exhaust Velocily Propulsion with Unbounded Thrust Magnitude

For interception the previous chapter has shown that the primer vector

must he zero at the terminal time, Eq. (4. 4).

The primer veclor can only beconie zero if its rate of chan“gc is dirccted
antiparallel to its initial dircetion, This result implies that the (ljquction of
thrust during interception must be constunt. Thi's" constant thn;st direction for
interception is independent of any consideration of the type of propulsion and holds
for all propulsion systems in field-free space.

The magnitude of the primer vector must decrease lincarly to zero
at intereeption.  There will be only one impulse represented by Fq. (4.5), which

may be re-writlen as (4. 6).

(4.4



D S
AV = e - ¥
ot
0 -0
- T
—_— -0 —
AV=-—t-1 - +vt-v°
£t

'The magnitude of the reguired velocity inerement may be found by
i
faking the dot product of I, (4.6) with itself, The velocify inerement is a func-
lion of the initinl relative position, the relative velocity, and the total time
allowed. For given initial conditions there is an oplimum time {or interception
‘which minimizes the velocity increment. This optimum time may be found by

determining the stationary point of the norm of E¢. (4.6). Carrying out this

computaiion yields the two minimizing roots given by Eq. (4. 7).

0 (g m¥ ) mv )y
- T 0 -0 .- '
(1t0-r ) (V, -vY

The left-hand root represents the optimum interception time when the vehicle is
approaching the target, while the right-hand root represents the optimum inter-
ceptlion time when the vehicle is receding from the target., The left-hand root
has an interesting physical interpretation as it is the negative of the range to the
Mrgot divided by the rate of change of range. The minimum velocity increment
for these optimum times is given by Eq. (4. 8), the left-hand expression again
applying to vehicles approaching the target and the right-hand expression for

vehicles receding from the target., !

.

(4.9

(4.6)

(4.7)



| ~0 =0 0
(V0 -V x (7 -1 o .
, _
av - N AR (1.8)
t 70

The left-hand term in Eq. {4.8;is equal to the magnitude of the relative
velocity mul l.i))li(>(l by the sine of fhc angle hetween the 1‘cl:1ti\fc,_\'clocity veelor
and the line-of-sight to the tavget, Tv applies only when the vehicle is approaching
the target., When the vebicle is rcéoding from the target the opﬁpmm mancuver
is to stop the relative motion except for an infinitesimal residual \'clc)éity which
will accomplish interception as the tirne becomes infinite.

When the vehicle is moving towards the target, the oﬁtimum intercep'~
tion has s(\\'c1';11 interesting geometric properties. As required by ]-“,q. (3.39) of
the previous chapter, the rate of ehange of the primer vector must he pe].'pendic-
ular to the relative veloeity at interception. The thrust is also dircclcd from the
unperturbed position that the intercepler would have at the terminal time {o the
position that the taryget hn‘s at the terminal time,  This Jast result will be trué
for any interception in field-free space with any propulsion system.

Another interesting interception problem is when the transfer time is
fixed but the time at \\'hich the initial orbit is left is not specified.  The required
velocity inecrement for tljis casc is given by Eq. (4.9), which may be re-written

as Eq. (4. 10).

- -0 = )
e AR AT (e

— - =0
AV o+ VLO Y ( (4.9




;'0-1-0 \70_\—]0
IR T (- 1%
At At

The quantity t in these cquations refers to the time at which the impulse is
nlvl)licr(l. The quantity At is the allowable mancuver time .L]', -t

This mancuver is the field-frce version of the optimum ibntcrception
of one planet by a vehicle that departs ﬁ‘om another planct with a specified trans-
fer time. Dy {aking the dot product of Eq. (4. 10) with itsell and finding the sta-
tionary point when t]' is allowed to vary holding th‘c quantity At fixed, yiclds

Bq. (1.11).

tl—lo (11._ )'(\t—\/ )
SARE A RETARIAS

The optimum value of the interception time is the same as the time of closest
anproach ol the two vehicles when no propulsion is applied, ‘The magnitude of

?thc veloeity increment for this case is given by Eq. (4.12),

. =0 =0 -0 -0
Hvt—v )X(rt-r)l

AV
IVf-volAL

" - This velocity inerement is cqual to the unperturbed closest appreach distance
divided by the given transfer time. For this case the rate of change of the primer

veetor and the primer vector are perpendicular to the relative velocity veetor,
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(1.10)

(1.11)

(4.12)



For rendezvous thcfc will be two impulses which will always be given
at the beginning and end of the mancuver, The first impulse puts the vehicle on
a collision coursce with the target, This is the sam.c impulse as is.requircd for
intereeption.  The sccond impulse cancels the relative velocity between the two
vehicles at interception.  The total velocity increment required is given by
Eq. (4.13).

17050 @) -0t -0y R -

INAE r
t -t - t -t

The magnitude of tlhc second impulse depends only upon the initinl range LB the
farget and the allowable rendezvous time, The total veloeity increment required
for roﬁdczvous is & monotonically decrcasing function of the time allowed. The
optimum time for rendezvous is always infinite. This optimum rendezvous time
is the same as the optimum time {or interception when the vehicle is receding
from the target.

If the transfer time is fixed but the time of initiating the mancuver is
open, the rendezvous may be a nalyzed by the same type of analysis as was used
for the corresponding interception case. Once again, the first impulse will be
the same as that required for interception and the second iﬁlb’t‘xlﬁsre will cancel
the rclativcvvclocity difference. The total velocitly increment is given by

Eq. (4.14),
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B e Lt B L A A L 0]

At At

AV

The optimum time for initiating the rendezvous mancuver may be found by deter-
minmg the ~tationary minimum of Eq. (4.14) with respecet to the terminal time.

‘The optimum terminal time is given by Eq. (4. 15),

-0 -0 =0 =0
: (rp -x ) (V, -V :
do0 L t . At

(VLO-VO) ' (Vto-vo) 2

Unlike the corresponding interception case, the times to start and end the maneuver
are centered around the unperturhed closest approach time rather than terminating

at that time. The total velocily increment for this case is given by Eq. (4.16),

2]
-0 =0 _ ,-0 -0
/—0 =0 =0 =0 [(Vy -V X (ry -7 )i
AV - (Vt -V )'(Vt -V S -0 =0
‘ [V, -V7] at

The two velocity increments are equal in magnitude., They cach have-a component

normal to the rclative‘velocity ‘wl.msc magnitude is the same as that for interception
in the same transfer time. Thesc two velocity components 65;1ccl each other,
Each velocity incrcmcnt also hhs a component which is equall to half of the relative
velocity and opposed to the relative velocity dirg:ction.

This minimum velocity increment for rendezvous with a-f'u‘(ed transfer

time is the same as the minimum velocity increment for transfer from the first

(4.14)

(4. 15)

(4.16)



orbit to the scecond orbit in the same transfer time. This is beeause the unper-

turbed motion of the two vehicles will produce all possible relative positions of

the two vehicles on cach orbit. This result will not generally be true for orbits
.

in more complex gravity ficlds. One other example for which it is true is for

coplanar circular orbits in a central gravity field.

4,3 Tower-Limited Propulsion with Unbounded Thrust Magnitude

For power-limited propulsion the aceeleration vector will be taken as
identical with the primer vector as was done in Chapter 3, With the primer
vector given by Fq. (1.2), the equations of motion may be integrated to-yield

Eqs. (1.17) and (4, 18).

e . , | |
v o= v(’;u.o(t-to) ‘3 0= : (4.17)
- -0 - 1.0 - 12 :

;o= 1‘0-%-\"0(t-t0)4€ O(t-t.0)2+%)\o(t-t0)q | 4. 18)

Similarly, the payoff may be determined by infegrating its diffcrential equation
to yicld Eq. (4.19).

-0

150, V15050 (oo O 0o’
g2 433 X(t-t)

120 ‘
oA A (-t (4.19)

i

For interception the primer vector and the thrust acceleration must go to zero
at the terminal time, * The initinl value of the primer veetor must then be given

by Eq. (4.20).
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-0 =
0 - 30y

;
At thc.tcrminal time the position of the vehicle must be the same as the position
of the target. Using this fact and substituting Eq. (4.20) into Eq. (4.18) yields
Eq. (4.21).

1 -0 -0 -0

- =0 =0
i°~ Slt-r ) 3Vo ) srt—r 3vt—v
o 10 1 02 ~Y 103" 1 02
(t -t )3 (t -1) (t -t»)3 (t —10)

Equations (4.21) and (4,20) provide the solution of the boundary value problem
and allow the determination of all quantities of interest, including the payoff.
Eq. (4.22).

-0 2

3 |r, -1
3 =3 1

04(Vf-70)u1-ﬁ)
3
(! - 1)

This expression for J has an absolute minimum of zero at infinite time, It
also has a local minimum with respect to tl if the axmgle between the realtive
velocity and position vectors is less than 30° and the intercepting vehicle is
approaching the target. The timc‘ at which‘this local minimuxﬁ occurs is given

by Eq. (4.23).

) 2 R
(EO-F%-(VO-VO) (;o_r% (VO-VO)
1 0 L t t {
t -t =-2— -0 -0 —0 -0 =0 =0 -3
(V, -V (¥, -V (V, -V (V-7
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(4.21)

(4.23)



During an optima) interception the thrusf; acceleration will deerease
linearly to zero. Hnwcvc.r. for guidance purposes it is useful to have u closed
l(;op synthesis of the optﬁmnl control in terms of the current state of the vehicle.
the current state of the target, and of the time to go. Sucha s_vnthesis is casily

achieved by regarding the initial state in Egs. (4.20) and (4.21) as the current

state to yicld Eg. (4.24).

=1
)
[*}

: "0 o (4.24)

The numerator in Eq. (1.22) for the payoff is simply the square of the
unperturbed distance hetween the: two vehicles at the terminal time, For inter-
ception with o g’iven transfer time but a variable terminal time, the optimum
terminal time will obviously be the time of closest approach, This is the same
as the optimum terminal time for the hmpulsive case, }-Iq; (4.11), The minimum

payoff, J. for this case will then be given by Eq. (1.25).
0 0 o -0 -0 2 /
5 [V =V X (x/ -1

For rendezvous, Egs. (4.17) and (1. 18) must be solved simultancously .

to yicld the initial values of the adjoint vector given by Eqs. (4.26) and (4.27).
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20 12 ‘«0 -0 1 -0 =0 1 0 -
-0 6 -0 -0 2 =0 =0 .1 0 - _
= -‘——*—T(tl tO [rt‘— r -+ 5 (Vt -V )(t -1 ) (4.27)
- ) el

The corresponding value of the payoff J is given by Eq. (4.28).

2 2
-0 - -0 - -0 - -0 -
|V —VOI (VO-VO)'(r_O—rO) N '1‘0-1‘0|
J - 2 __..t.'__._.__ - 6 t t + G t‘ ) (4 ‘)-h.)
1 2 3 2
o0 (it -10) BT

This payoff J is a monotonically decreasing function of the transfer time. The
optimum time for rendezvous is once again infinite as it was for the impulsive

casc.

The optimum control for rendezvous may be synthesized exactly as it

was for the interception case to yield Eq. (4.29),

< 6. - = 2 = = 1
A= ————|T -T+=(V, -V)(t -1 (4.29)
(t1_t)2 l { 3\ :

In this case the magnitude of the acceleration during an optimum rendezvous will
vary hyperbolically with time,
Tor the case where the transfer time is specified but the time of starting

or terminating the mancuver is not, the payoff is given by Eq. (4.30).

G7




2
0 =0 -0 =0 -0 -
IV -V 1.0 102 (VO-VO)-(rO-rO) 10
) t -t , (L -1) { { L-1
dJ AL 2-606 A + 6 5 - 5 6-~-12 ——T—
At At 4
-0 -0, 2
]rt -r| .
+ 6 5 (4.30)
At
This equation has a stationary minimum at precisely the same time as that for
impulsive rendezvous given by Eq. (4.15). The corresponding payoff for this
case is given by Eqg. (4.31),
2 2
-0 =0 -0 =0 -0 -0
[V, -V 7] (V. -V X (r, -1))]
1 { { t ,,
J o AR + 6 S —— 3 (4.31)
At lvt -V7 oAt

The first term in Eq. (4.31) represents the cost of a constant deceleration which
cancels the relative velocily between the two vehicles, The second term repre-

sents the cost of a change in position with no change in velocity at right angles

to the veloceity change, ‘The latter thrust component varies linearly with time

and passes through zero at the unperturbed closest approach time.
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CHAPTER 5: TRAJECTORY OPTIMIZATION
IN AN INVERSE SQUARE-FIFLD

5.1 Integrals of Motion

The Hamiltonian for optimal irajectories in an inverse square-field

is given by Eq. (5.1) where y is the gravitational constant of the central body.

H_?EE_ >‘—3£ - AT +OM (5.1
m r

The mass {low rate will be assumed to be independent of position and time. The

equation of motion is given in second order form by Eq. (5.2).

= Lz
rET =773 (5.2)
m r
The mass flow rale is given By Eq. (5.3) for the constant.exhaugt velocity roc-
ket and for the constant power rocket. ‘
oo (L 1) e
m = - C’ 2P (0- )
This notation with a comma séparating‘ the expressions for the twn types of
rockets will be used consistently through this chapter.
The equation for the primer vector is given in second order form by
Eq. (5.4).
‘ . . ,‘
. Y -
A=y +3y—20r (5. 4)
3 5
r r




The {inal equation for the Lagrange muliiplier for mass is given by Eq. (5.5).

. XM
°="3
m
.
The {irst inlegral of this system of cquations is given by the

Hamiltonian, which is constant for an optimal {rajectory as the eqﬁal.ions
have no explicil dependence on time. Three more integrals are given by
a vector integral which results from the spherical symmetry of the prob-
lem. ']?a)&ing the vector cross‘ product of the primer veclor with Eq, '(5.2)
produces E¢. (5. 6).

AXT Axr

Taking the vector cross product of the position vector with Eq. (5.4), pro-

duces Lq. (5.7).

=3 XA
XA = - y~——=
A Y5
r

a@tdxh;xz):o

This equation may be integrated to produce Eq. (5.9) where A is a vector

constant of the motion. . i
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An additional integral may be derived when the thrust is unbounded

(cases C-2 und P-1) where the mass multiplier is given by Eq. (5.10). :

(e P ,
o= =, = -
\m mf3> (5.10)

= 2
C RN *
I T wm ———— L, . ama— .
P==y 73 -Ar+ (5.11)
T 2
Taking the dot product of the primer veclor with Eq. (5.2), produces Eq. (5.12).
N U
AT o= A= - yS2 (5.12)
m r
Teking the dot products of the position vector with Eq. (5.4), produces Eq.
(5.13).
rA = 2‘)’&“5‘
T (5.13
© Adding twice Eq. (5.13) to Eq. (5.12), produces Eq. (5.14).
8T.X + X1 = 3#‘-’5 v AL (5. 14)

r m
The time derivative of the left-hand side of Eq. (5.15) is equal to its right-

ha'nd side. Substitut'ing Eq. (5.14) into the right-hand side produées Eq. (5. 106).

d - = -2 o L . =
g A'T +2rA) =2rd ATk 34w (5. 15\
‘ -d~(i-§~ +2§.:X) = 37% + 3% T +;\_f.
dt r m (5. 16)
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Substituling Iq. (5. 1) into Eq. (5.16), produces Eq. (5,17,

) =0

le‘\

d - - ’
I (Aer +2rX) + 3H - (x?:;- , 5

Eq. (5.17) »may be integrated with respeet to time to produce the additional

integral of motion for these two problems — Eq. (5.18).

e B

AT+ 2reX + 311t - (8V, 5J) = const. ,

¢

The integration can be earvied out for the constant exhaust velocity case he-

cause the thrust is turned on only when the primer vector has unit magnitude.

The integral holds on the open interval from the initial time to the final time

even if there are singular arcs.
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5.2 Varintion of Pavametlers

For 11}:1113' problems it is convenient to rewrite the equations of motion
in terms of the variatlion of orbital elementis, instead of the posit.ion and velocity
veetlors used in the previous section., The orl.Jital clement formulation. is useful
for hoth coﬁsting arcs where the vehicle is unpowered and for low thrust tra-
jectories where the elements of the orbit may be expected to vary slowly. Eq.
(6.2) is replaced by six first order equations for the ra(.(;s ‘(.)fi‘c‘:!‘mnge of the
orbital elements. The clements chosen ave semil‘najor axis a, cccentﬁcity e,
argument of perigee w, inclination i, ldngitudc of the node £2, and mean anomaly
M. Resulls f.or other sets of elements can be dgl‘i\'ed in the same'way. The

rales of change of these elements may be found in any standard {ext - celes-

tial mechanics and are given by (5. 19) through (5. 24).

da
dt /»
de a 1- f f + T (f 4 f 3)
at Y | mf3
dw -I‘ f f +TF (f fz fl .
dt | me ] ’-
fr (ff cos w+f sin w) :
Y mf tan i |
.(ii____ : l«z(f4 cosw—ilfs'sm w
dt Y mf

5

(5. 1N

(6.20

(5.21)

(5.2



flf _ il T, (L[ cos w+ f4‘sin w) ‘ |
= / .
_dt Y mf5 sin i ‘

dM : alF (f fz - - T - 2
L /Z . /j AL 2ef§) Fof f(1, (i)
at 53 v :

2f
mef,

The mean and eccentric anomalies are related by Kepler's Eq. (5.25)4 and the {,
‘ i

arc given by Iigs. (5.26).

M=E-~esinE

{ =sinE f =l1l-ecoskE

1 3
”f2=—’cosE . - f4=cosE-e
- 2

fs— l-e

The Hamiltenian for this formulation is given by Fq. (5.27).

{ - : -l. N . ) : . . . .
I )\a'x Aee + Aww 4 )‘il + }\QQ 4 AMM +01h

;

This lInmi]tonidn is the some as the Ilamiltonian given by Eq. (5.1). The trans-
formation between the {wo formulations may be found by the standard techniques

of canonical transformation, A different technique will be utilized herein. The
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;
basis of this tcchnﬁmc is noting that the iinst:mt:mcous values of X and X are
independent of the thrust level so that X and X have the same value on the
osculating unpowered conic and on the powered irajectory. ¥For the os-
culating conic the ﬁn‘ust will be zero which yieltls Eq. (5.28) when Eq. (5.1)

and (5.27) arc equated.

-y =& 0 [yl o
SArg - AT =y [y (5.28)
r a :
The components of the primer vector in the eylindrical coordinate
systems whose axis is pcrpéndicular to the orhital planc may be determined by
equatling the components of the primer veetor in liq. (5.1) and (5.28)."
9
2 . _ o~
a 2)\qae fl +)\ecllii - (xw— fr)xM)f fs 2)\Mof3 |
\ = [= - 1 (5.29
r Y ¢ 3
: ~ Yy - +I)f
X 12 _nef, + X ef(f, + 00+ (X - ) O, ‘.25) ) o
. =y J. oY)
8 Vv ef3 | |
LA TR, |
ANy I / (5.31)
5

The quantitics ﬂl and [32 are given by Egs. (5. 32).

= + sin wecsci -\ sin W coti
Bl )\icosw AQ w |

. i + ¢cscl - cos wcbti
ﬁz %ismw A cos u ‘ Xw




The derivative of the primer vector is calculated by determining its
value on the osculating unpowered ellipse. The Hamiltonian on this ellipse is

given by Eq. (5.33).

M l73 , (5.33)

With this Hamiltoniun, the ra.es of change of the Lagrange multipliers for all
the elements excepl the semimajor axis are zero. The rate of change of the

Lagrange multiplicr for the semimajor axis is given by Eq. (5. 34).

S N 4 (5.34
A ~2)\ '35

The components of the derivative of the primer vector in the r, 6, z directions

arc given by Eqgs. (5.35), (6.36), and (5.37).

LB, L AN .
= —fE+ XX -20
ANEIE RS oA, a0 i (5. 35)
. N 'axe
6 : .
o T N o+ 5.30)
A= FEE Y o Ag t A8 (5
| .9 - A, ; - | (5.37
Y a, "a

The first two terms on the right-hand side represent the rates of change due 1o
the variables in the equations while the last terms on the right-hand side are due
to the rotation of the coordinate system. The rates of change of the eccentric

anomaly and central angle are given by standard two-body formulas,
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X'\ l e

] =

. Y
0= |3

0
A
(]

Carrying oul these operations results in Egs. (5.38), (5.39), and (5.40).

f + -
) )\Me f1f3

. -2\ ae -\ ef f -
z = Aale Kec 2f5 (Aw 3 ]\’l
r
: aef2 (5.38
3
) _ + - - -
- )\eerlf5 (Aw f‘r))\M) f2 F)\Mefs (5.39)
e aef,
3
(5.30
: + f
)\7.- Blflfs B
qufS

These six expressions for the primer vector and its rates of change are general
expressions which are true both for powercd and unpowered orbhits. Théy repre-
sent the results of av canonical transformation between the two forms of the equa-
tions of motion, 1In the particular case of an unpowered coasling are, the oscula-
ting orbit will be identical with the coasting arc at all points and Eq. (5. 34) may

be integrated to yield Iiq. (5.41).

g = +->»M/ (t - 1% (5.41

On a coasting arc, the Lagrange multipliers for all elements except the semi-
major axis will be constant. It should also be noted that the cquatiohs for the
primer vector and its derivative on a coasting aré are the same as the vari-
“ational cquations for position and velocily respectively, This means that

any of the innumerable solutions of the

e




e

variational equations Qf two-body orbits may be used to determine the primer
vector time history during cbast. The present formulation has t}me possible
advantage of identilving the integration constanis in‘ terms 6f ‘the Lagrange
mullipliers of the orhital elements,

The integrals of motion derived in section (5. 1) will now bé expressed
in terms of the orbital elel'ncnts and their multiplicrs. This will be done by
direct calculation of the dot and cross produets of the primer vector with the
position and veloﬁit.y vectors. 'The components of position and velocily are

given by the following standard two-body equations.

: . el . Vi
r=af3 r=,';{-i—- rf = T
, R 3

The first constant of the motion, the Hamiltonian, is given by Eq. (5.42) for

the constant exhaust velocity problem and for the constant power preblem.
2
H= ;Xl\’l + \ ' 9

1t should be noted that for the constant exhaust velocity problem, this provides a

determination of k'\l in terms of the curreni state. The value of the primer
\Y ..

vector for the power limited 13r0b10111 may be determined by sguqring and adding
Egs. (5.29), (5.30) and (5. 231). |

The vector constant will be determined by direct calculation to be
given by Eq. (5.43) .where the components of the column vector on the right

side are’in the r, 8, and z dircctions.
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LB +1,18,

f3
f.f8 -8
L. L 161 42
XA + MXr = T
8 - (5. 43)
Xw . | /
This result is precisely the result obtained by Moyer (AIAAN 3. T, 1232—1235).
for the time-open constant exhaust velocity problem. It is shown in that paper
that Iq. (5.43) yields the following cquations for the Lagrange multipliers of
the Euler angles of the orhit.
Am = 0y
o~ 'n (5. 44)
0
= i+ sin i i - Q
Xw XQ cos i 'Sllll(Cl sin C, cos &)
(5. 45!
= i 0
)\i 02 sin £ + C, cos
(5.46)
The two constants in these equatlions are given by Egs. (5.47) and (5.48).
c, =)\ cos Q° - cot i° sin O+ 2% sin 6° {0
1= >‘Q o Sin &7 cse i (5.47)
o . .0 o .
C2 = )\i sin 0~ 4+ XQ cot io cosQ0 _)\Z cos n° ese io . (5.48)

It should be noted that equations (5.44), (5.45), and (5.46) are simply the dot

products of the vector constant with the axes of rotation of the Euler anglps;
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Finally, the quantity in the last integral may be determined by direct

calculation to be given by Eq. (5.49).

)\.

i

+ 2r'A =-2X\ a
a

plier for the semimajor axis in terms of the llamiltonian, the time, the cost,

;
and the semimajor axis. It should be noted that Eq. (5. 18) reduces to Eq. (5.41)

on a coasting arc. -
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5.3 Muaxima of the Primer Veetlor -

;

For the constant exhaust velocity case, the thrust may only be applied
at absolute maxima of the primer vector having unit magnitude.
XN =1 (5. 50)

Since the primer vector is continuous and has continuous first and second time

derivatives, all maxima except those at the initial and final time must be sta-

tionary maxima,

=0 | o (5.51)

-

'2'\.

A necessary conditicn for these stationary values to be local maxima is that the -

second derivative of Eq. (5.50) with respect to time must be negative.

<90 (5.52)

>t

XX+ Ae

The dot product of the primer vector with its second derivative may e found

from Eq. (5.4) to be given by Eq. (5.53)

55 . 2 2 ' (5.53)
kX~—r3(1—3\r) o /’ ?

As the dot product of any veclor with itself is necessarily positive, Eq. (5.52)

yields the additional inequality of Fe. (5.54).

XX <o \ (5.54) -
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Equations (5.53) and (5.54) together yield Eq. (5.55).

2 1 2
A, S35 = sin 35.264° (5. 55)

A necessury condition for the prirﬁcr vector to have a stationary maximum is
that the thrust direction must be within 35.264 degreces of the local horizontal
dircction,

Equation (5.52) may be used to obtain a bound on the rate of change
of the primer vector giycn by Eq. (5.50).

A 2
A S ';3'(1 - 3)\1.)

The maximum rate of rotation of the primer vector at a stationary maxima is
cqual to the rate of rotation of a satellite in a circular orbit at the same radial
distance. This maximum rotation rale can only he realized if the radial com-
ponent of the primer vector is zero. If the radial component of the primer
vector has the maximum allowable value given by Eq. (5. 55),'then' the rate
of rotation of the primer vector mustk be zero.

For the case of singular arcs, the magnitude of the primer vector
mus{ rcmain unity over a finite time interval. In these cases, the inequality

in Egs. (5.52) and (5.50) must be replaced by an cquality.

R e ame e




Chapter 6: LINEARIZED POWER-LIMITED TRANSFER
IN THE VICINITY OF AN ELLIPTIC ORBIT. -~

6.1 Optimum Thrust Program

In Chaptler 4 it was mentioned that if the maximum flow rate of a rocket
is independent of position then the adjoint equations become uncoupled from the equa-

tions of motion for lincarized gravity ficlds. This may be seen by writing Eq. (3.9)

for this casc as Eq. (6.1).

(6. 1)

The differential equation for the primer vector depends only upon the time history of
the gravity gradient. In a linearized analysis the change in the gravily gradient due

to a ch.;mgc in posi(ion is neglected. Therefore, the adjoint equations for the primer
vector become uncoupled {rom the equations of motioﬁ. The gravity vector and

gravity gradient matrix arc evaluated along a nominal trajectory. As long as posilion
deviations from the nominul are small, such an analysis will give a good approximation
to the motion.

The nominal trajectory may 1:30 powered or unpoﬁveyi'ed‘. A i)arlicularly
important case is where the nominal trajectory is an unpowered elliptic orbit‘. timal
low-thrust trajectorices in the vicinity of such an elliptic orbit may be found annl._vtically
by linearizing around this elliptic orbil. Since the primer vector history along a coast-
ing arc was found in the previous chapter this primer vector history will constitute the

optimal control for the linearized problem.
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One consequence of the linearization wiﬂ be that fhé Hamiltonian for ihe
power limited problem will no longer be a constant of the motion. The reason for this
is that the gravity gradient matrix in Bg. (6.1) is now a function of time. In order {o
have a constant Hamiltonian it would be necessary to solve the exact nonlinear cqua-
tions of motion. The fact that the Hamiltonian is nol a constant for the linear problem
creales no difficulty as a full set of integrals for t]ﬂis problem is obtained during the
course of the explicit solution of the problem.

‘ The lincarized motion in the vicinity of an elliptic orbit is conveniently
solved ih a variation of 1):1i"a1nct¢1‘ formulation, The cquations of motion are written

as Lgs. (6.2) to (6. 7).

3 ., -
-(12-1- _, i I‘refl + I‘ef5
dt y mf3 (G.2)
fii _ i Frf1f5 + Fe(f4 + f2f3) :
a ~ Jy mf, (6.3)
8 = /?-Frglfs + Tyl + fg) f - 6.0
dt Y mef3 :
a F_f
@/t Iy (6.5)
dt Y mf '




ds {r—-w"
= /l o
a /Yy m

(6. 6)

— \
b a F (f 12 - 2¢ - T
-+ [= rlyls = efy) - Fyfyfptfy + fﬁ)

dM
— = (6.7
dt

a Y mefl "

The angular variables 8, o, and 8 represent small rotations of the
elliptic orbit in its own plane, around the major axis, and around the latus’rectum,
respeetively.,  As the linearization of the problem only involves small rotations it is

convenient to use orthogonal rotations rather than Euler angles. ‘The angular variahles

are deflined by Eqgs. (6. 8) through (6.10) in terms of variations in the conventional Euler

angles.

6= 6w+ cosi 68

(G. 8
o= cos wbi + sinisin w 68

| (6. 9)
B = =sin wbi + sinicos wd (6.10)

The Lagrange multiplicrs for the linear problem will be exactly the
same as for the coasting arc. That is, the Lagrange multipliers for each of the
orbit elements except the semimajor axis will be constant. The Lagrange mul-
tiplicr for the sc.mirnnjoi' axis will be a linear functlion of time given by Eq. (6. 11)

and evaluated on the unpowered coasting ellipse.
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2 a (6.11

For this set of orbit clements the optimal thrust acceleration program is given by Eqgs.

(6.12) through (6. 14).

Fr fa ' Zkaae 11 + Aeeflf?’ - ()\e - fsk M)f f5 - 2)\1\4013 ' (6. 12
— T A = — WV
m r JY ef3
¥o ‘_A/"a_‘ 2h mefy + A ef(fy 10 + (g = LA\ Uy ”i)fl (6.13)
m 8 Ay ef ’
: 3 . 4

F o hONT XSS

E_ - /_—‘ a4 815 (6. 14)

m 7 Y f5

Thr thrust acceleration program represents the vector sum of six different accelera-
tion progroms corresponding to the initial values of zach of the Lagrange multipliers.
As the thrust acceleration vectior for this problem is identical with the primer vector
on a coasting cllipse, these acceleration programs are also of inferest for impulsive
transfers. The programs corresponding to the first five Lagrange multipliers are
illustrated in Figurcs (6. 1) through (G.5) for an eccentricity equal to the square root
of 1/2. Each of these programs will maximize the change in its orbhital clement for

a given fuel constmpiion during a fixed time period. In general, each program will

" also produce changes in the other orbital elements. !
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'J‘ﬁc optimum program for changing semimajor axis is illustraied in
TFigure (6.1). Ior this program the primer vecior is always dirceted along thé
velocity lvcctor and its magnitude is proportional to the magnitude of the velocity.
The locus of the tip of the primer vecior will describe a circle, as this circle is known
to be the hodograph of the velocity vectbr for Keplerian motion. The primm"vectmj will
have a stationary maximum at periapsis and a minimum at apoapsis. At an cceentirieity
of zero, the primer vector will remain constant in magnitude as it moves arouhd the
circular orhit. As the eccentricity goes to unity, the magnitude of the primer vector
at periapsis will approach infinity. If this magnitude is constrained to be finite then
the primer vector will consist of a discontinu ou‘s function having finite magnitude

-at periapsis and being zero cverywherce else,

e LY

Fig. (6.1) Optimum thrust program for change in a(e = 0,707).
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The optirum thrust program for changing cccentricity is illustrated
in Figure (6.2). This program always has two equal maxima at apoapsis and at peri-
apsis for all eccentricities. The primof vector solution corresponding to this Lagrange
multiplier on a cousting arc allows for two impulse' transfers with this coasling arc in
between the two impulses. The direction of the thrust always approximates the direc-
tion of the semiminor axis of the ellipse., For small eccentrici'ties, there is 1 latively.
little variation in the magnitude of the acceleration. At an cccentricity of unity, the
magnitude of the acceleration \rcctor:varies linearly fronlm zero at the origivn;to its
maximum value at apoapsis. Like the semimajor axis program at ﬁﬁit"e_ccentricity
there is also an isolated value at periapsis which in this casc is ccjual to the value
. of the primer vector at apoapsis. For this eccentricity of unity, the thrust is direc-

ted exactly at right angles to the major axis,

TFig. (6.2) Optimum thrust program for change in e(e = 0.707).

|



\ The oplimum thrust program for rotating the orbit in its own plane is
shown in Figure (G.3). In this case, the primer vector also has iwo equal maxima

which constitute possible locations for impulses in the impulsive problem. These

maxima occur in the vicinity of the semiminor axis and arc exactly at the semiminor axis
for eccentricities of zero and one. TFor an eccentricity of zero, this program is the same -
as the program for changing cccentricity but is moved 90° around the orbit. For an
eccentricity of unity the thrust ié dirccted at right angles to t?he_‘ majofaxis instead of
lying closc to il. At this cecentricity, the acceleration program varies smoolihly {rom
zero at apoapsis and periapsis to a nmxin.mm at the semiminor axis. At this eccentricity,
this ﬁx‘ogram is the same as the program for rotating the orbil around the latus rectum

except that it lies in the plane of the orbit.

Fig (6.3) Optimum thrust program for change in 8 (e = 0.707).

89




Figure (6.4) shows the optimum program for rotating the orbit around the

semimajor axis, In this case, the magnitude of the primer vector is proporiional to its

perpendicular distance from the latus rectum, Figure (6. 5) shows the primer vector

solution for rotating the orbit around the latus rectum. In this case, the magnitude

of the primer vector is proportional to the perpendicular distance from the maj or

axis.

Fig. (6.4) Optimum thrust program for change in ¢ (¢ = 0.707).

Fig. (6.5) Optimum thrust program for change in (e =0.707).

The sixth thrust program, the program for changing the mean anomaly,
is a combination of three ])1‘0{.‘,'1‘1\]1"]5, the program for rotating the orbitl in its own plane,
a purely radial program whose magnitude is proportional {o radius z—md the semimajor
axis program with a linear time variation superimposed upon i't..¢ | Because of the change

in the semimajor axis program with time, this is the only program that will not be peri-

odic and will not repeat itsclf,




6.2 Integration of the Equations

The corvect first order terms for the rates of change of all elements

except the mean anomaly may be found by simply substituling Eqs. (6.12) through
(G.14) into Egs. (6.2) t:hroug‘h (6. 6) and integrating. Tor these integrations the orbit
clements are taken as the elements of the unperturbed ellipse. The independent \:‘111—
able used for the‘;intcgr;xt.i ons is the eccentric anomaly:of the unperturbed orbit, The
first order pertui‘bations in semimajor axis produce first order perturbations in mean
anoﬁmly so that Eq. (6. 15) must be used to calculate the perturbations in the mean
anomaly, The double integration implied by this equation may be avoided by rewrit-

ing the perturbhtion in semimajor axis in {erms of the idenlity of Eq. (6.10).

[a'F (£ £ - T o2
8 Aaa o I‘r(fz;f; 2 eI23) Fofyf5tis *5)
5 /.5 - ot (6. 15)

3
_ ditAny |, da

The integration of the equations of motion with the optimu{n thrust pro-
gram is straight forward and resulis in Eqs. (6.17) through (6.24). The various intic-

grals occuring in these integrations arc expressed by the & functions given following

Eq. (6.24).
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These equations represent a complete fii‘st order golution for optimum
transfers in the ncighborhoéd of an élliptic orbit, T Hcy afe 1inea3:{in both the changes
and in the state and the corresponding Lagrange multiplicrsl. ‘By using the proper
boundary condilions or transversality conditions, it is possible to solve any desired
interception,rendezvous or orbit transfer problem. TFor interception the transvers-
ality condition is that the final value of the thrust acceleration given by Eqs. (6.12)
through (6.14) must be zero. TFor rendezvous the initial values of all the Lagrange
'multipliers must be found so as lo drive the terminal state deviations to éefo. For
orbit transfer, the transversality condition is that the Lagrange multiplier for the
mean anomaly must be zero, The other five Lagrahge multipliers must be deter-

mined so as to reduce the deviations in their five siate variables to zero.

6.3 Sccular Changes in the Orbit

While Eqgs. (6.17) through (6. 24) reﬁresent a complete solution of the
problem they are rather complex aind contain a large. number of terms. If the time
for rendezvous or orbit transfer is large, sAo that the mancuver requires many rev-
olutions in the elliptic orbit, then the equations can he greatly simplified and an ex-
plicit solution is easily obtained, This is done by neglecting the bounded periodi.c

~ terms in Egs. (6.17) to (6.24) in comparison with the dominant secular terms to

yvield Egs. (6.25) to (6.32).

ba = (G. 25)
5 24
2
Ac = ) _a_ 2(1-eYE
e 73 2( ) (6.26)
o5 . ,




2
2e (6.27)
Ba= ) 5:)--1'*492‘ _
y" 2(1-c% (6. 28)
5
AB = a2 E
F=2g /3 |
Py 2 (6.29)

=E~-AM (6.30)

t= [ E | (6.3
t= /3 (6. 32)

For rendezvous or orbil transfer, the Lagrange multipliers that satisfy the houndary
value problem are easily determined and the payoff may be written directly in terms

of the changes in the elements and the total transfer time.

Y |Aa 2 A -
J == —'—2- o+ - eZ +g£1 c)ga +2A32
2at' |4a 5 1-¢ 1 + 4e | |
" 20 AM - AM*)2 : (6.33)
3 (t')3
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(6.34)

If only long time-orbit transfer is considered, all the cross product
terms in Eqgs. (6.25) through (0.32) disappear, The thrust program corresponding
to the T.agrange multiplier for cach orbit element not only maximizes {he rate of change;
of that clement, but produces no chahge in the other four clements. This particular set
of orbit elements was chbsen because they have this orthogonality property. Not all
gets of orhit elements will ]m\;c this property.

Equations (6. 12) through (6. 14) show that there are no secular chunges
in the thrust acceleration programs for orbit iransfer. The averaged thrust accelera-
tion will, therefofo, remain constant from révolution to revelution, and the orbit cle-
ments will,on the average, change linearly with time,

TFor rendezvous problems the final ‘value of the mean anomaly, the sixth
orbil element must be considered. LEqualion (6. 33) represents the fuel requirement
for changing all six e¢lements over long time periods. 'The quantity &AM  defined by
Eq. (6.34) represents the perturbation in the mean anomaly produccd by the thrust
programs for changing semimajor axis and for rotating the semimajor axis in its
own plane., The fuel required to change the mean anomaly depends upon the square
of the difference belween the desired perturbation and this particuiar perturbation,

The thrust program that produces the desired perturbation in the mean anomaly is

the semimajor axis program of Figure (6. 1) with an averaged thrust acceleration

that is a lincur function of time. 'The terms involving AM in q. (6.12) and»(G. 13)
) /

have a negligable cffect on long-time motion butl are significant for short time ren-

dezvous, Since Eq. (6.33) holds only in the case of long time motion, the mean
97




~nomaly term of Eq. (6.33) will generally be negligable compared to the terms in
brackets because it is inversely proportional to time cubed. The fuel require'd for
rendezvous will be only slightly greatesr than the fuel required for orbit transfer for

these long-iime cases.
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CHAPTER 7: OPTIMUM POWER-LIMITED
ORBIT TRANSTFER IN STRONG GRAVITY FIELDS

7.1 Integrals of Motion

In scction 6. 3 of the previous chapter, the secular rates of change of the
orbit elements in the presence of small perturbing thrusts were determined. In the pre-
sent chapter, these rates of change of the orbit elements will be integrated over many
revolutions to determine the optimum sequence of orbit clements between the initial
orbit and the final orbit. The changes in the orbit elements will no longer be assumed
to be small, hut the rates of change of the orbit elements due to a small perturbing
thrust will be assuméd to be small. Only the first order terms in the cquations of
motion will be considered. The analysis is an application of what is known as Kryloff
Bogoliuboff averaging. The errors pf th.is {ype of averaging will be on the order of
the square of the ratio of the thrust accéleration to the acceleration of gravity, TFor
typical electric propulsion systems with acceleraﬁions of about 10_4g‘s, the error
in' this approximation will be on the order of 1 perceun: ot about 10 earth radii.

Using the resulis of section 6.3 of the previous chapter an averaged

Hamiltonian may be writlen as Eq. (7. 1).

~ c IS 2 ' 2 ’
O =—2 4,\232 +2A§(1 - o2y 4 B de A§+ _1+4e 224 _1_)\2 (7.1)
2y 2 2¢ a1-e ¥ o P

For this Hamiltonian the Lagrange mulliplier for the mecan anomaly has been assumed

to be zero as only orbit transfer and not rendezvous will be treated. The Legrange




multipliers for the angular variables in Egs. (7. 1) may be expressed in terms of thé

Lagrange multipliers of the conventional Euler angles by Eqgs. (7.2), (7.3), and (7.4,

N = (7.2)
)LO{:Bl:J\icos w+)\Qsin wcsci—Kwsix1 weoti (7.3)
Ap=B_ ==\, sin w+ A cos weseci- A cos wcoti‘ o (1.e
B "2 i 9] W

The use of the conventional Euler angles will allow large rotations {o be treated. It
éhould be noted that Aoz and >\f3 are the same as the quantities Bl and ,82 of Eq. (5.32).
The \-fect01' integral given by Eqs. (5.44) through (5.48) of Chapter 5 apply also for the
present problem.

It is convénient to‘ replace the eccentricity by a new variable ¢ defined
as the arc sign of {he eccentricity, Eq, (7.5). Its corresponding Lagrange muitiplier

is given by Eq. (7.0)

O = sm;L e (7.5)
2
xw.—.)\e 1-c (7. 06)

In terms of this new variable, the averaged Hamiltonian is now given by Eq. (7. 7).
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[~y
+ 1+ 5 tan ¢ Az +_}_>\2
o B8
2 2 (7.7
It should be noted that the rates of change of the semimajor axis and the variables ¢
and B arc independent of the eceentricity. Only the rates of change of the rotations

around the major axis and in the orbit plane depend upon the eceentricity. By averag-

ing the Hamiltonian of Chapter 5, another integral given by Eq. (7.8) is obtained.

eh}
i
“’P'Nz

= const, (7.9

This integral may also be obtained by noting that the Hamiltonian is independent of
the independent variable, time. This implies that the averaged value of the square
of the thrust acceleration is a constant throughout the motion. Equation (7. 8) may he

immediately integrated to determinc an integral for the payoif given by Eq. (7.9).

C =1l o (7.9)

Becausc the averaged acceleration is a constant, the cost increases linearly with time.
Another integral may be found by averaging Eq. (5.18) and (5. 49) to yield the results
given by Eq. (7.10).

0

, _y0.0 = o _
Xaa ) it Xaa J (7.10)
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Another integral may be found by writing down the rates of change of the

semimajor axis and its Lagrange multiplicr.

The averaged Hamiltonian possesses the con~
ventional canonical equations in terms of ihe averaged values of the orbit elements and

their Lagrange multipiiers.

da a3
=4 =
- dt ay (7.11)
dai 3 412a2
- a (7.12)
dt a v

By dividing Eq. \(7. 12) by (7.11) these equations may be integrated to yield Egs. (7.13)

and (7.14)

o My fy - 2292,
A= — -
3= , 7.13
a 233 2.'10:12 ‘ ( ?
0 L0 02, o~ 2
a 4)\aa t  2a"nt (7. 14
—_—— =] + :
a Y Y '

: . . on .
Equation (7. 10) may be verified directly from these equations. The notation x is

defined as the initial value of x raised to the n th power.
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The explicit solution for the semimajor axis and its Lagrange multi-
plier allows the eliminﬁtioxi of these variables and the reduction of the problem from
a five-dimensional problem to a four-dimensional problem, In order to do this, it
is convenient to rewrite Eq. (7 .‘7) in terms of the rates of change of the ’orbital cle-
ments rather than in ter1uns of the Lagrange multipliers, The equations of motion
such as Eq. (7.11), may be solx"ed for their Lagrange multiplicrs.in terms of the
rate of change of the correspbnding orbital element, This can easily be done in
the present case because of the lack of cross-product terms to yield Eq. (7.15).

2 . "2 : St 2 *2
~ 4 .
H=L |2, 2 z,bz + 28 - + 2P

€ .lr
2a |42 5 145 cot® 145 tan? (7.15)

A new payoff variable § whose rate of change is defined by Eq, (7.16) is now

introduced,

(7.16)

It will now be possible to separate the original optimization problem into two parts,
The first part is to determine tlie cost for given changes in the sémimajor axis and
¥ . The second part will be to minimize ¢ for given changes in the remaining four
orbit elements. Egq. (7.16) shows that this second problem may be interpreted geo-

metrically as the problem of determining a minimum length trajectory or gcodesic

in a four-dimensional orbit element space,
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In terms of this new variable, the Hamiltonian of Eq, (7. 7) is now given

by Eq. (7.17).

2y |*ha T2 (1.1

The rate of change of ¢ is given by Eq. (7.18) where it should be noted that AP is a

constant,

2y (7.18)

Equation (7. 18) may be integrated by use of Eq, (7,12) and (7, 13) {o yield Eq, (7.19).
al ) 0 0 , g
B S :‘: P € ' oy \a‘
K cos /20 4 »/8'_-»«;,;« sin /‘20
A (7.19)

The constants of Egs. (7.19) and (7, 14) may be climinated to determine the payoff
explicitly in terms of the initial and final vulues of the semimajor axis and the total

chunge in ¥, Eq. (7.20).

t |a° n%a a (7.20)

This cquation has an interesting physical interpretation, The cost is the same as the
cost of transfering in ficld free space from {he mean orbital velocity of the initial orbit

to the mean orbital velocity of the second orhit with an angle of the /2% between the
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two velocity vectors, DBy the definition of Y this will provide a complete solution for
problcms where the eccentricity is changed but there is no rotation of the elliptié orhit,
In such problems, the variable ¢ will be equal to the total chaﬁg‘e in the orbit element

¢ divided by /5.




7.2 Coplanar and Coaxial Transfers

Itis possible to solve the four-dimensional problem of minimizing ¢ in
ferms of the remaining four-orbital elements explicitly. However, the solution of this
general orbﬁ transfer problem is rather complex and only 2 two-dimensional problems
will be considered in this chapler, These two problems:arc tlic important cases of co-
planar and coaxial transfers, In both.cases there is only a rotation around a single axis.
In the coplanar case, the rotation is around an axis perpendicular {o thé orbii plane. In
the coaxial casc the rotation is around the major axis of the orbit. The coplanar and

. . 7

conxinl cases are obtained from the general case by means of the following definitions,

Coplanar

et
it
[~}
>
11
o

2
in
o
>
=
in
o

Coaxinl
W= 0 A6=0
i=0 Xa--:).l
Q=0 Ag =0

106

L e es.m b -




-

Because of the particular form of the Hamiltonian, Eq. (7.7), the coplanar and coaxial
cases ¢an be transformed into one another so that it is only necessary (o solve onc of

these problems to obtain the solution of both, The following iransformation cquations

will take the solution of one problem into the solution of the other problem,

Coplanar Coaxial
a | > a /A
o <> O ~-m/2
w <> i
i=0 S w= 0
_ =0 <——->’ “ | Qs.;)

The Hamiltonian for the coplanar problem is given by Eq. (7.21).

——

99 5.2 145 cotz"’a 2
~s a v - —— “
[= 57 [0 F5h,* 2 M (7.21)

The equations of motion and the Euler Lagrange equatlions are given by Eqs, (7.22)

through (7, 25).

hY
“o (7.22)

2 a)\w (7.23)
L] r 0
Noo= -:23- 3—’ col © csce X
© a w L (7,24
A o=0
w (7.25)
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i A first integral of these equations may be obtained from the constancy of At;') as L.

(7.26).

2 2 2 : ;
kj = )\:;2 + )\w(cot :90 - cot ) | (7.26)

K

Dividing Eq. (7.23) by Eq. (7.22) and wlilizing Eq. (7.206), Eq. (7.27) is obtained.

. (1+5 cotzo)l .

W 5 e e " (7.27)
[\ ) PR 4 vt .
5/ ‘o +kwc to -chotg)

Equalion (7, 27) is recadily integrated to yield Eq, (7.28).

¢

= (eote N (7.28
W= |cos (g“z‘{‘]“) - ésmklcos 1(009? ) , . ( )

1 b cOs \1 Q."O

The variable k, in Eq. (7.28) is defined by Eq, (7.29). . ..
0 | (7.29)

2 2 02 2 2
X cot” k, = + X cot“0
b €Ot Ky F Ag A oot

By utilizing the definition of the rate of change of ¥ given in Eq. (7.16) and integrating,

Eq. (7.30) for ¢ is oblained,

— B o

; .
1+ 4 cos kl _1/cos ¢ (7.30)
d), = ~ cos cos k e .
» . | J \1 (po .
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Fquations (7,28) and (7, 30) provide a paramefrie representation of the solution for i,)
md @ in terms of ¢ and the initial conditions on ¢ and the Lagrange multipliers.

;

0 0 -
0 =0, X, At @) _ (7.31)

0 0
U= @(lb’ >‘(pa xw’@ ) (7.32)

This type of i‘.epl'osenl.ntion can he explicitly solved fox;in the present case. The struc-
fure of the resulting extremaldis shown in Fig, 7.1. The values of  are limited to
the range between 0 and 7, Larger rotations need not be considered., The values of
¢ arc limited {o the range hetween 0 and 27, Values of @~ grealer than 7 represent
elliptic orbits having the opposite sense of rotation to the initial orhit, The dircetion of
roial ion‘ is reversed by passing through a unit cccentricily c]lipsc having zero angular

momentum hut a finite semimajor axis,

Tig. 7.1

. 0
Structure of the extremals for ©0 =45,
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If the desired terminal va]vue of ¢ is also 90° there will be no change in the eccentri-
cily during the 11‘ansfér if the total change in the angle W is Jess than 360. The verti- |
cal line for k1 =90° in Fig. 7.2' is a minimizing extremal until it becomes tangent {o
t’he cenvelope at this point.  Beyond 36° the ellipses decrease in eccentricity and then
inerease ‘it 1o produce the extrelnnm shown {or other values of kl' While this trans-
fer is somewhat academic the corresponding coaxial {ransfer is the more interesting
case of transfer between inclined circeular orbits, For inclinztions of less than 360
the orbital {ransfer will involve nojchange in the cecentricity of the intermediate
orhits while for angles greafer than 36° the infermediate orbits'wil'lv l..‘>ccome ecceniric,
'lthe extremals and pavoff curves for two other initial values of ¢, 450

o) -
and 0 are shown in Figs, 7.3 and 7,4,

'20.

¢, DEGREES

;

. o . . o
Fig, 7.3 Extremals and payoff curves for coplanar {ransfer with o0 = 45
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Fig. 7.4 Extremals and payoffl curves for coplanar {ransfer in the degenerate case o0 =0
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In Figure 7.1 three sample extremals, A, B, and C, arc shown representing different
\7\11108 ol the constant 1{1 for a vqluc of (,oo of 450. If extrémal A is followed from
ils start at ¢ = 0, itwill first p:\és through a region in which there are no other ex—
iremals which go {o the same poinf, Up to point 1, extrémal A \.vill represent a unique
solulion of the boundary value probjlcm for any point it passes through, At point 1, ex-
tremal A first crosses an cnveloim of extremals shown as the dotted line.  Beyond point
1, there is another family of extremals such as cxlremal C \Vhich gocs {o every point
along extremal A, The boundary ‘vu]uc problem no longer has a ’L.n-xique solulion, Be-
tween point 1 and point 2, cxtremﬂ A represents the absolule h\i)mi1ﬂ\1nx value of P

to reach any point along it, At point 2, cxtremal A has the same cost as exiremal

C. A poiﬁt where {wo extremals of different families have the sume cost is known as a
Dur]Soux point, Petween points 2 and 3, extremal A still represents a locally mini-
mizing sblution of ihe optimization problem but does not represent the absolute mini-
mum which occurs with extrenials of the other family. At point 3, extremal A first
becomes tangcﬂ to the envelope of extremals, Such a point is called 2 conjugate point,
At the éonjugute point, thé Jacobian of the state with rcspect to the initial values of the

Lagrange multipliers becomes equal to 0.

on’w = Mg akw =0
N RV
Ny o\, (7.33)
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If extremal A is continued beyond point 8, it ceases to be even locally minimizing,.
That is, there are curvés in the immediate neighborhood of exiremal A which will
have a lower cost, At point 3, éxtrcnml A violates an additional necessary condi-
tion for optimality of the classical calculus of variations that is known as the Jacobi
condition, The Jacobi éqnditi(m.‘is simply that a niinimixing" cxtrm}m] must possess
no conjugate pm’nt.s hetween its initial and final points, For 1;1*61)101119 in the classi-
cal calculus of variations where the conirol never lics on a boundary, the combin:tion
of the strong forms (without equality) of the maximum principle and the Jacobian condition
is sufficient for an ave to be locally minimizing. It should he noted that these suffici-
ency conditions do not guaranice that the extremals represent an absolute minimum
as is shown by the example of extremal A between points 2 and 3, On extremal C,
the three points 1, 2, and 3 become coincident,

A set of extremals and constant cost lines for the minimizing exiremals

is shown in Fig. 7.2 for an initial valuc of & of 90,
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In Tig, 7.4, the problem becomes degenerale beeauge the argument of perigee ol a

circular orbit is undefined, In this case, the fuel consumption depends only upon

the change

s in cceentricity and semimajor axis between the initial and final orbits.
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CHAPTER 8: LINEATRIZED IMPULSIVE TRANSFER
IN THE VICINITY OF A CIRCULAR ORBIT

8.1 The Primer Vector on a Circular Orbit

The conventional orbit elements u.éed in Chapter 5 to derive the equations
for the primer vector have singularities at zero cceeniricity and zero inclination, It is
desirable to use another set of orbit elements which is well behaved for this case to rep-
resent the primer vector on a circular orhit,

One such sel of orbhit elements is defined
by Egs. (8.1)

= g + 8 e = esinw + Q)
e, =ecos (w ) y W
i =1 cos Q iy = isin § > (8.1
M= M+ w0  E =E+w+l
% x

For the particular case of zcero eccentricity the rates of change of these

orbit clements are given by Eqgs. (8.2) to {8.7).

da
o g.2)
dt 2 (
e GVF‘ F, | (8.93)
—ti —— = sinE + ~—2cosE .
dat y \m x m x
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—= = f = — cos E
dt Y m PN
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= = — gin
dt Y m z
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— ~§ -9 —
©odt a a m

(8. 4)

(8. 6)

(8.7

The primer vector in terms of this set of orbiial elements is given by

Eqs. (8.8) through (8.10) and the vate of change of the primer vector is given by Eqgs.

(8.11) through (8.13).

A= /E sin £ - cos I .
v y ()\c’smlx Xe. ) I,x 2)\M )
X . y X

a
o= [ 2% a +2 D) N _gin F
o "y ( )\a Aex cos rx 4 2}01\, sin Lx)

>
fl

a
= ( s E+ in £
. /;(;\ix cos I‘x )\iy sin Ly)

; 1
A = = (~2 HER DA si D
v a( Xan ?Le cos]‘X Xey91111x)
X
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(8.9)

(8. 10)

(8.11)



- o
)\o = ﬂ(->\cx sin )3+ )‘eg cos Ex + >‘I\’I) (8.12)
A =L, sinE_+X cos |

o a(- i sin 17 , ©0s JX) (8.13)

X y

As for the elliptic orbit, all the Lagrange multiplicrs will be constant exceptl the Lagrange
i
muliiplier for the semimajor axis which will vary linearily with time or with the central

angle. Egs. (8.14) and (8.15).

] o 3 v o0
>‘a = >\a " E)\M 5 (-t (8. 14)
x ¥ a ,
o
e % T (8.15)

1t is somewhat casier to visualize the behavior of the primer vector by transforming the

origin of the polar coordinatc system to vield Egs. (8. 16) 1o (8.19). ~

d ‘ v
N = /j( /? 2 ) (8. 16)
T y Y . )‘ey SHNG 2>\Mx

e

O- 3 , oo)

A o 1
A= —(2)\n~!-2/2 . 2 coso+3)\\
H - .M ‘1\
o WY Yex >\ey X X (8.1
A X FX X - ‘
T oY L e 1y >k(»:)Liy Acy)‘ix A
)\2 = /5 ( ~ cos O+ sin )
2 2 y .18
DZ 22l (8.18)
: cx ey ex ey
-] >kev '
(,’3 = E - {an -———tan (8. 19‘
X >\
ex
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This form for the primer veetor on a eiveulur orbit may be used to tveat transters be-

tween neighboring nc*:u‘—(:irculnr orbits. The gecometric properties of the primer veclor

are of considerable importance in this analysis and will be illusirated in the followin

o
o

scetions,
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8.2  Time~Open Case--Nadal Solutions
For the time-open case, the Lagrange mulliplier for the mean anomaly is

0 and the components of the primer vector may be wrilten as Xgs. (8.20) through (8. 22).

} 2 2 2 b -
AL = 5 )\cx o+ xey sin 8 (8.20)
/ @\ w222 >~, c‘osG (6.21)

JAPECIPR v eRy PRSP

YT A A -a

! e ey ix ‘
o= (8 SR XY hep g S22V K oing (8.22)
7 4 ')' 2 9 Lo 9 o i
)\ + >\~ . A + A“
‘ ex ey vV %ex  Tey

These equations represent the equations of an ellipse in threc space. This ellipse is
formed by the intersection of a 2:1 elliptical cylinder pnral]cl tothe X eaxisanda

plane which passces throunh the interseetion of the eyvlinder axis w 1tn the X >‘9 plane.

A typical cage is illustrafed in Fig, 8.1 which also shows the projcction af the ellipse

‘ ] ‘ v
on the )kr)]9 plane.

4

Primer Locus Diagram
Fig. 8.1
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For transfers with more than one impulse, this elliptical primer locus
must have more than one equal maximi.  There are only three configurations of this
eclliptieal primer locus which allow the primer vector o have morve than one maximum.
The first configuration, to be treated in this section, represents 2 family of solutions
where the center of the ellipse is located at the origin, (Fig. 8.2) In this case the two

. . Sy . o .. o
cqual maxima occur on the major axis of the ellipse and are separated by 180 . For this
case the components of the primer vector at the second impulse will be equal in magni-

tude but opposite in sign to the components of the primer vector at the first impuise.

v

Primer Locus Diagram

Fig. 8.2

~As the two impulses are sep:u‘:ﬂed by 1800. both impulses must occur on
the line of interscction or line of nodes between the initial and final orbit planes. 1T they
do not, then the sccond impulse could not remove all of the inclination between the two
planes. ;f\s a result, this case will be referred Lo as the nodal cuse. The folal AV Jor

the nodal case is given by Xq. (8.23).
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(8.23

11 should be noted that the fuel consumption is independent of the change in semimajor
axis for this case. In order for the primer vector to h ve two equal maxima for this

case, the two incqualities given by Egs. (8.24) and (8.25) must be gatisfied,

2 .
BL = pe ~ (8. 24
| 0 _
2
AiZ < 3Aey

Tor the equations, the x axis has heen assumed fo be aligned with the line of nodes.

§.3 Time-Open Case: Nondegeneratle Solutions

A second configuration which allows two equai maxima of the primer vector
corresponds to cases where the ellipse passes through the )P rxis and the primer vectors

again lie in single plune. (1ig. 8.3)
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Primer Locus Diagram

Ifig, 8.3

This case will be referred to as the nondegenerate casce as the fuel congumption will

depend upon the changes in all of the orbital elements, Yor this case the radial and

oul of plane components of the primer vector have equal and opposile values at the
two impulses, while the circumferential components have equal valves. Tor this
Lo . o . -
. ease, the enetral angle is not restricied to 1807, The {olal fuel consumption for

the nondegencrate case is given by Eq. (8. 26).

2 ' ) —
2 Aa 2 2 2  An 2, 9
AV = Ai” + AQ‘ + Acv— 5 * (AL - Aex - /_\(,y o+ 02) +4 Ai Acy
A T 2a a
(8.26)
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For the primer vector to have two cqual maxima for this case, the following two incquali-

fiecs must he satisfied,

é—:-f-— o )
ox T By (8.27)
a
A 2 2 "
a 2 2 .
== = Ac_ + Ae 4+ = Ac Ai - NG (8.28
R e AN

8.4 Time-Oper Caser Sineulay Solntions

The third configuration of the primer vector Jocus which allows i'01‘ more
than one muaxima of the primer vector is a com‘.ﬂn:n}.inn of the two previous cases where
the primer locus passes through the >\‘9 axis and where the center of the cllipse is lo-
cated at the origin of the com‘dinu(c‘s.\'slem. This particular locus is tilled so that
the primer vector lmé unit magnitude at all points,  This is an cx:n‘xiplve of o singular
solution where thp orhitul location of the impulses can not be determined from the
primer vector solution. In fact, for this lincar problem, the singular solution is
ununigue in that there are an infinite number of t ﬁmsfcrs involving different numbers
and loeations of impulses all of which have the same total fuel consumption. This

particular locus (IMig. 8§.4) is only one of two that occur for circular reference orbits.
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Primer Locus Diagram

Fig. 8.4

The other singular locus is a special case of the nondegenerate case where the ellipse
shrinks to a point located atl plus or minus one on the, >Y9 axis. Yor the singular case

illustrated in ¥ig. 8.4, the total AV is given by I'Cq. (8.29).

9

=
AV = _15' 'f(\/ 3Ai + Acv)2 + Aei (8.29)
4a ‘ '

Once again, there are two inequalities which must be satisfied to distinguish the singular
case from the {wo other cases which can occur,
The fuel consumption of the different cascs is illustrated in Figs. 8.5

through 8.10. In cach case, the tolal change in semimajor axis and eceentricity are




plotfed with contours

of constant values of the {ofa] change in inclination, = All three

clements are normaljzed by dividing them by the total AV assuming a gravitational

constant of unity., The total change in inclination contours range from a numerical

value of one at the origin to o value of vero at the cdges of the square figures. Each

tr

contour represents o change of . 05 in the normaljzed inclination change,
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Fig, 8.9 Fig. 8.10
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The angular variable shown to the right of cach figure represents the angle hetween the
linc of nodes and the desire:! direction of the change in cceentricity, In Fig., 8.5, we
have the coaxinl case in which the change in ecceniricity is alligned with the line of
nodes of th two orbits, In this case, the singular case docs nol arise sand only the
nodal casc and the nondcgcner:uc casc occur.. In Fig. 8.6, theris a 50 angle hetween
the cceentricity change vector and the line of nodes and the singular case starts to ap-
pear at the left and right sides of the figure. The curves for both the singular case
and the nodal case are indepdndent of the change of semimajor axis and are straight
lines whereas the curves for the nondegenerate case start to develop some curvature.
As the angle hetween the cecentricily change vector and the line of nodes
increases, the nodnl region decreases and the si}\gulzﬁ' region grows uniil in Fig., 8,10

the nodal region has completely disappeared.
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8.5 Time Tixed Coses

I'or these cases we must return fo Eqgs. (8. 10) through (8. 18) including
the I.,:zgr:m;:é multiplier for the mean anomaly, When this term is included the elliptie
locus becomes stretehed out to form a cycloid-like curve in three dimengions. Itis as
though one took an celliptic coil of wire and sirctched it outl unifermly in the >‘6 direction.
In; this case it is possible to have trangfers with up to six impulses in the three dimen-
sional case and up to four impulses in the two dimensional ense. There is a gencral
result that linear transfers require o number of impulses no greater than the number
of stules. In the time-open case this means that transfers between ncig]méring near-
circﬁ]ur orbits may require up to five impulses. However, these cases, in fact, re-
guire no more than two impulses even in the singular case. Ilowever for time-fixed
rendezvous, it is casy fto consiruct two dimensional transfers which use the maximum
numbher of four impulses, ‘Three dimensional trangfers which use the maximum num-
her of six impulses h: ve been determined by Maree and by Breakwell.

Iror the two dimengional case, Prussing has considered the four impulse
transfers and has shown that all of these transfers have symmci’.ry properties. e con-
struc‘ts these transfers by taking the two dimensional cycloid-like locus and drawing a
circle which is tangent to the locus at two points. As long as thcse tangencies produce
local m aximq of the primer vector, he has determined the stationary interior maxima
of the primer vector. The next interscctions of the circle with the primer locus yicld
thc‘n(’ms‘.ation:n‘.\' {erminal maxima of the primer veetor., Prussing has shown that these

solutions exist with both odd and even numbers of loops of cycloid-like curves included iy

the cirele, The single loop transfers even exist for transfer angles slightly below 180°,
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|
Prussing further

cw?sidcred the fixed time rendezvous between neighboring civeular

i
He found that these readezyous

orbils, Ses may requive four impulses, Un

¢e impulses
with initial of final coast periods; three impulses, two impulses with an initial or final

- coasl period and two impulses. There is nlso a class of singular cases correspondiiig

to the coplanar singular case which may have any distribution of impulses and coasts.

His results show ‘(hnt the structure of the minimum fuel 1'(111dez\'ol_!s solulions in even

this simple case is very complex, The extensions of this work to some special three-

dimensional cases by Breakwell and by Marec show that {he extrn dimension adds pro-

protionally to the complexity of the solutions.
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CHAPTER 9: OPTIMUM IMPULSE TRANSFER IN AN INVERSE SQUARE FIELD .

9.1 Time Open Transfer Detween Coplanar, Coaxinl Ellipses

There are four different clagses of coplanar, coaxial transfcr problems de-
pending upon whether ﬂ}c cllipscs interseet or not and upon whether ﬂ)e apoapsis of
the cllipses point in the same or opposite directions. If the orbits intersect, then
the oplimum transfer is always o Hohmamn transfer from the highest apsis to the
opposite apsis. Tor the intersecting orbit case one impulse will always be an ac-
celerating impulse and the other impulse will :11w:1ys be a decelerating impulse. The
primer veetor solution corresponding to this transfer is the solution corresponding
to the Lagrange multiplicr for the eccentricily in Chapier 6. These two~impulse
trmysfcrs must be conu):nrcd with o transfer that goes out to infinity and comes back
again. If the axes arc aligned, then the oplimum transfer vin infinity will be via
two parabolas which arc tangent to the ])eriai)ses of the two éllipscs. Transfer from
the first to the second parabola is via an infinitcssiinal ilmupglse al infinity, If the
orbits arc not aligned, the same two transfer parabolas to infinity are used but these -
parabolas must be connected by an elliptic orbit at infinity., Marchal has éiven a
numl')cr of resulls \\'hic’h indicate whether the optimal transfer is a two impulse trans-

fer or via infinity.

If the orbits are non-intersceting und the axes are alignad, the optimal {wo-
impulse transfer is again from the highest apsis to the opposite awsis of the sccond
ellipse. If the orbits are non-intersceting and the apses are opposed, then the Hohmann

transier from cither apsis of the outer orbit must be considered to determine the {rue
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9,2 Time Open Transfer Netween Non-Coplunar Coaxial Ellipses

optimum two-impulse transfer, ‘The pﬁrimcr veetor solution corresponding to the non= -
intersecting case has both impulses cit]:cr accelerating or decelerating the veloeity

and has a primer vector solution corresponding to the Lagrange multiplier for the semi-
minor axis. Oncc again there is a three impulse transfer via infinity (the bi-elliptic
transfer) if the axes are aligned, and 2 four impulse transfer via infinity if the axes

are not aligned, TFor the aligned case, the optimal transfer is always through infinity

if the ratio of the two periapsis radii 1&. greater than 11,938 and is always two impulse

Hohmann if the ratio of these periapsis radii is less than nine,

[}

As for the coplanar case, all of the impulses for coaxial transfer should be

_on the line of apsides (which is also the line of nodes) and should have no radial com-

ponents. In the non-planar case, therc is an additional type of iransfer possible which
does not occur in the planar case. Namely, a threec impulse transfer where the third
impulse is giving ot a finite radius, One important class of transfers for which the
finite radius thrce-ﬁmpu]se transfer is always optimal is {or transfcr ﬁefween circular
orbits of the same radius for inclination angles between zero and 60,185 degrees,
Marchal has once again given a number of rules for determining whether the transfer
should be a two impulse transfer, a three impulse transfer with a finite periapsis ra-
dius or a transfer via infinity. Tfor all of the transfer most of the inclination change
is done at the largest apoaﬁsis radius, The other impulses always lic within about

six degrees of the orbit plane of the initial and final cllipse. The optimum inclination

change for each of the impulses can readily be determined either from the primer vector

golution or from an analysis by Sun which reduces the problem to the well known spider

fly problem.




9.3 Time Open Transfer Between Coplanar Ellipses

Time open transfeor between coplanar but non-coaxial cllipses fall into three
diffcrent categorics. 'l'wo. imﬁu]sc transfers, three impulse transfers with all im-
pulscs oceurring at finite radii, and trunsfers via infinity. The three impulse trans-
fers oceur rarely and only for highly cecentric initial and {inal ¢llipses over a small
range of orientation mngles, "J.‘hc two impulse transfers arc.of two different fumilies.
One family has hoth impulses éithcr increasing or decreasing the energy., TFor this
family both impulses oceur on one side of the major axis of the transfer cllipse, The
limiting members of this family are the Hohmann transfer whose primer vector solu-
tion corresponds to the Lagrange multiplier foi’ the semi-minor axjs and which has o
transfer angle of 1800; and the primer vector solution corrésponding to the Lawcllo'n
spiral which has a transfer angle of 0°, The olher family of two impulse transfers

‘ ‘ ;
has one impulse being an accelerating impulse and the othey impulse being a deccler-
ating impulse.  Tor this family, the two impulses lie on the opposite sides of the
semi-major uxis of the transfer cllipse nand the transfler angle is always in the vicinity
of 180°, The limiting members of this family of two impulse transfers are the re-
verse Johmann iransfer corresponding to the Lagrange multiplicr for eccentricity
and the symmetric {ransfer corresponding to the Lagrange multiplier for changing

the argument of perigee.

At cvery point on the ellipse there is only a small range of angles in between
the local horizontal and the local dircetion of the velocity vector in which impulses

may be dirceted for an optimal transfer, 'The limiting values of this set are deter-
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mined by the members of the two ditferent families of two impulse {ransfers mentioned

in the last pavagraph, A single impulse transfer [rem the initial ellipse or onto the
final ellipse from the transfer ellipse must lie within this range ‘qf uscful angles, Tor
all eceentricities Lelow o c1‘jtic:\1 cecentrieity of 0,925 thcrc,; is a positive range of
uscful angles ot every point on the cllipse,  Above this éritic:xl ceeentricity, there is

a range of positions between periapsis and the semi-minor axis for which there is no

‘positive range of useful ungles and which eannot he employed in optimal transfer,

A‘blm'e this eriiical cecentricity it is possible to have transfers between the two differ-
ent families of fwo impulse transfers so that infinitessimal three immulse transfers in
the vicinity of these highly ceeentric ellipses become possible. At an eeeentricity of
unity, the range of forbidden positions where no optimal fmpulse may be applied extends

/

all the way [rom periapsis to the semi-minor axis,

9.4 Time Open Transfer Between an Ellipse and a Hyperbola

This is onc transfer problem which is completely solved in the time open case,
Unfortunately the optimal solution requires infinite time.  This optimal solution is
uscful for generating the optimal {finite time transfer for long transfer times by means
of a perturbation analysis. '.l‘};e optiﬁmm time open transfer requires five impulses.
The first impulse is a t:-mg;cnti‘al impulse at the pei‘iupsis pf the initial ellipse which
puis the vehicle onto an escape parabola. The second impulse is an infinitcssimal im-
pulse at infinity on thvc escupe parabola and it transfers the vehicle onto an ellipse at
infinity which transfers the vehicle to a different position on the celestial sphere. "The

third impulse is an infinitessimal impulse at infinity and it {ransfers the vehicle back
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onto a parabola which will have jts periapsis radius at the minimum allowable radius

determined by the planctary radius and atmosphere. At the periapsis of the second

paribola, a sccond finite impulse is applied tangentinlly io transfer the vehicle onto
~an escape hypeshola having the proper encrgy and the proper divection of the asymp -

totic velocily vector. The fifth and final impulse is an infinitessimaol impulse af in=

{finity on the escape hyperbola to produce the correct angular momentum veetor for

this hyperhola,

9.5 'Time Open Transfer Tietween Two ITyperholas

The optirhum time open transfer between two hyperbolas is complétc]y solved
only in the (:gl,s:(: where the radius of the altracting body is zero so that impulses may
be applied at the center of attraction. In tlﬁﬂ rase the opt.i‘m:xl {ransfer is a six im-
pulscktr‘:lnsl'cr where all the impulses are of i.nfiﬁitcssimal ‘m;gnitudc and the trans-
fcr time is infinite, TFor the ease where there is a minimum‘ allowable radius, the
trnnsfcr_ problem hecomes quile complicated. By applying infinitessimal impulses
al infinity, the problem is reduced to the problem of transfer hetween two asymptotic
velocily veetors, The optimal transfer always Jies in the plane of these two velocity
veetors, 'This problem has been partinlly solved by Marchal in some recent papers.
For some cascs the optimal ltrinsfer requires four impulscé and the use of an inter-
mediate ellipse at infinity., This type of (ransfer reguires the spending of;an infinite
amount of time in the ?icinity of the planet, The othier optimal transfers orly require
spending a finite time in the vieinity of the planet :and involve energies which are al-

sways above the parabolic energy level,
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| Whén the transfer is not made through the parabolic level, there ave never
more than two finité impulses, If there is n-xore than one finite impulse, at least
one of these impulses always occurs at infinity., The other impulse will generally
occur somewhat above the minimum allowable radius, It will only occur at the mini-
mum allowable radius if a transfer between the two asymptotic velocity vectors may
be made by means of a tangential impulse at the minimum allowable radius. 1f this

is not the case, the impulse at a finite radius will not be tangential, The transfer

hyperbolas may or may not descend to the minimum allowable radius.

9.6 Coplanar Time-Open Angle-Cpen Transfer

This is one transfer which has been completely solved analytically for the
two impulse case, The problem is stated as optimal two impulse transfer between
two diffcrent radii and between fixed radial and circumferential components of ini-
tial and final velocity. It may be looked upon as transfer between specified locations
on initial and final orbits with the argument of periapsis of the orbits heing left open.
This solution is useful for re-entry and for ascent tfajectories and has guidance ap-
plications since it can be written down in closed form. In gencral these transfers can
be improved by adding an extra dcgree_bf frecdom and not specifying the points of ar-
;rival and departuré on the terminal orbits. In this latter case, the optimal orientation

is always coaxial with the periapsis pointing in the same direction.

9,7 Time Open Transfer Between Fixed End Points

The problem of time-open two-impulse transfer between fixed positions on

fixed initial and final orbits has been considered by a number of authors. The solution
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has chn reduced to ﬁndi_ng‘ the ro‘ots of an eighth degree pelynomial, 1t has been
shown that for some initial and final bositions on clliptic orbits, the optimal two
impulse transfer may involve a hyperbolic intermediate orbit., In this case, as well
as in some other cases, the fuel consumption of the two impulse transfer may be re-
duced by going to a transfer through infinity, If the constraints that a finite impulse
must be applied at the specilied initial and final positions is dropped, then, by allow-
ing coasting in the initial and final orbits, this problem may be reduced to the problem
of optimal transfer betwpcn speeified initial and final orbil,.s. The problem with speci-
fied positions does have some application to ascent and descent trajectories where

there may be a minimum allowable radius.

9.8 Time I’i,\:ocl Transfer
Very little has been done on the problem of time fixed transfer and rendez-~
vous. The work that has been done has shown that the problem is one of considerable
coﬁnpléxity. The work with neighboring orbits has shown that the optimal transfer may
involve up to six impulses. The work with singular ares has shown that in the time
fixed case t;hcre_ may exist optimal coplanar singular arcs so that singular arcs as
well as a Jlarge number qf impulses must be considered in finding the minimgzing ex-
“tremal for thesc transfers. The major contribution has been an iterative technique
which allows the determination of an optimal n-impulse transfer from the non-optimal
t\;'o-impulse transfer between the initial and {inal positions. However, this method
is only a method for {(hopefully) {finding a locally minimizing solution. In general it

will not be known if there arce other n-impulse transfers or if there are other trans-
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fers which may involve one or more singular ar

for future research,
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CHAPTER 10: SINGULAR ARCS

10.1 Necessary and Sufficient Conditions for Singular Ares.

For optiinal rocket trajectories with constant exhaust velocity, a
phenomenon known as a singular are may oceur, A singular are occurs when the
cocfflicient of the thrust acceleration in the Hamiltonian remains identically zero

over u finite (hrust arce for a finite time. 1In these cases, the optimum magnitude

of the thrust acceleration can not be determined from the Hamiltonian, Imposing
the condition that the cocfficient of thé thrust aceeleration in the Hamiltonian re-
mains identically zci‘o will allow the derivation of a nmgnitude for the thrust ac-
celeration at each point on a singular are, Yor the case where the thrust accel-
cration may become unbounded, this will correspond to the magnitude of the primer
veetor being unity along such an arc. Considerable information about such arcs may

. /
be determined by taking. the successive derivatives of the magnitude of the primer

veetlor, all of which will be zero, If the optin.ml thrusi magnitude is bounded then
the magnitude of the primér vector will be constant on a singular arc., As has been
pointed out earlicer, for lincar problems singular arcs correspond to nonunique
solutions with unrlcfinedbncccle ~ation magnitudes., However, for the nonlinear prob-
lem the acceleration magnifude on the singular arcs become well defined. Such arcs

may be candidates for portions or all of a minimizing extremal.

The literature on the classical calculus of variations provides very

little information on singular ures. In recent years the discovery that singular arcs
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may oceur in minimizing solutions has lead {o rencwed h‘\tcrest’in this problem. This
recent work has culminated in necessary and sufficient covl.mdit.ions for singular zlrcé
although‘the problem of coupling singular extremals to nonsingular extremals is siill
not in a satisfactory stale. The first of the new necessary conditions was generalized
or {ransformation of the Legendre-Clebsh condition of ihe <::|1cm\:xs el vaviations, The
fextension was carried oul by a number of investigators including Kelley, Tait, Robbins,
Gui‘]ey, Goh, and Speyer, An additional necessary condition for singular arcs was {hen
developed by Jacobson. Move recently necessary and su ﬂ'icient condifions have bcqn
oblained by Jacobson, Spever and Jacobson, and MceDanell and Powers. s These condi-

tions allow the testing of a singular arc for local optimality,

10,2 Junction Conditions

I(cllcj', Kopp and Moyer have shown thutl oplimal junctions hetween
singular and nonsingulnr arcs can be very complex. For example, they have shown
that for the rocket problem \Qiih a bound on the thrust magnitude, an optimal junction
between a singular and an arc of maximum thrust must involve a well-defined infinite
sequence of switches between maximum thrust and zero thrust. This infinite sequence
of switches takes place in a finite time. However, if impul)ses arc allbwed, iL is appar-
ently possible to have a simple junction between a singular are and an impulsive thrust.
Not much work has been done on this problem and it remains as a topic for future

investigation,

10.3 Singular Arcs for an Inverse Squarce 1ield,
One of Lawden's many contributions {o space trajectory optimization

was his trcatment of the coplanar singular arcs, and his analytical integration of the
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time-open arce which has hccome known as the Lawden spiral, The gencralized Legendre-
Clehsh condition was subscquently :1])p]iéd to these arcs by Robbins and by Kopp and Moyer
o yield the result that the optimal thrust dircetion must poi ﬁt in toward the center of at-
{raction and that the square of the sign of the angle with the horizontal must be less than
or cqual o 1/3. This resull rules out the Lawden spiral as on this singular arc the

) /
thrust always has a radial component directed away from the center of atiraction, This
is a very imporiant result as it indicaies that for the time-open coplanar problem  the
minimizing solution can never have a singular arc, However, Robhkins has shown {hat
fo;‘ the time-~lixed case n‘ significant protion of the phasc space is filied by singular arcs
which do satisfy the generalized Legendre-Clebsh condition,  Among these singular ares
is one considered hy Fraeijs de Veubeke which corresponds {o the fixed-time angle open
case. This particular are can bc‘ integrated analytically as can the Lawden spiral and a
portion of this are is minimizing, Robbirs uses an argument similar to an argument in
the classical caleulus of variations to show that sufficiently shprt, segments of ginguier
arcs satisfying the generalized Legendre-Clebsh condition are Jocally minimizing. With
the development of the new sufficiency conditions for singular arcs, this argument is no
Jonger necegsary and it remains as a topic for future investigaiion to apply the additional
necessary and sufficiency conditions to the singular arcs of an inverse square field. An-
othér problem for futurc investigaiion is the determination of composite extremals in an

inverse squarc ficld involving both singular and nonsingular arcs.

The case of singular ares in three dimensions has heen treated by
. . e . - » \ . /. .
Christian Marchal, Two of his co~workers, Contensou and Marce, have aiso consid-

ered an academic type of singular are which may occur in the time-open case. This
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peeuliar type of extremal involves applying a finite acceleration for an infinitisimal time
. : ) « t. O 03 . I3 vae e

and then coasting through an angle of 360~ before applying another infinitisimal pulse.

These ares do not appear to be of much interest because of their somewhat esoteric

natuire and partially because they appear to he nonminimizing,
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CHAPTER 11: INTERPLANETARY 'l’l?AJECTORIES

11.1 Impulsive Truajectorics

The problem of calculating optimum trajectories from one planct to another
is an n-body problem, For preliminary anal;rsis this n-hody problem can be
simplificd by considering only the atiraction of the sun and of those celestial bodies
to which the space craft makes a close appro:.ch including the launch and the arri-
val planets. deden has made an approximalc analysis of this n-body problem by
utilizing what is essentially a low order maiched asymptotic expansion. This type
of analysis has been widely used forr mission planning purposes and has been found
to be sulficiently accurate for preliminary d‘esign purposes. In this analysis the
radii of the spheres of influence of the plancts are neglected. The trajectory from
one planct to another is cﬁlculénted as a heliocentric two hody trajectory fromAthe

position of the first i)l:mct to the position of the second planet. The relative veloci-

(

ties of arrival and departure are then regarded as the asymptotic vel’ocities on two
body approach and departure hyperbolas relative to thp planets. The time from one
planet to ancther is based only upo:n the l)eiiocexitric two body iransfe . ﬁ‘he time
inside the plunetaryspheres of i.x1ﬁ1mnce is neglected.

A highei; order analysis by Perko and Breakwell of the rﬁatched asymplotic
expansion shows that‘the crrors in calculating propulsion requircmenis fr011x this
modgl are ucceptnl)ly small,

Ih calculating the primer vector for thiskapproximatc n-body trajectory a

change must be made in the magnitude of the primer vector necessary to trigger an
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impulse at the approach dcimrt.urc planets, The primer vector on the heliocentric
trajectory is caleulated in the normal fashion except that its boundary conditions
arc somewhat different.  Lawden has shown that the magnitude of the primer vector
at the start of the heliocentric are should be smaller than unity by the ratio of the
asymp@tic vplocity on the initial departure hyperbola to the periapsis velocity at
the beg‘inning of this dqmrmrc hyperbola. A similar condition holds for the arrival
hwvperbola, These 1\\;0. concﬁi:ions define the magnitude of the primer vector at the
two ends of the heliocentric trajectory. 'i‘he direction of the primer vector is the
‘'same as the direction of the relative velocily vector to the planets. The primer
vector on the cscape h;merbola hes lthe solution corresponding to the L’agrangc mulii-~-
plier for changing the ;semi—major axis or the energy of the hyperbola. The primer
vector is coincident with the direction of the veloceity vector and its magnitude is
proportional {o the magnimdé of the velocity vecetor,

The analysis of the heliocentric trajectory is conducted exactly as thg analysis
of the normal two-hody orbit except for the changed conditibnlon the critical magnitude
of the primer vector at the launch and arrival pieﬁuets. For an intermediate impulse
given in heliocentric space the magnitude of the primer vector must again have a
stétionary maximum of unity.

Two impulse transfers from one planet to another are readily calculated by
solving Lambert's problem for given launch anq arrival dates. If contours of constant
total delia ‘v are plotted as a funetion of the launch and arrival dates {he well known

“pork-chop' curves are obtained. These trajectories may readily be checked for
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locol optimality by caleulating the necessary conditions on the primer vector along
the trajectory., During any single opposition only portions 6f the two impulse "pork-
chop" curves will represent optimal {ransfers. In many caslcé 1t will be necessary
to go to an addilional mid course impulse or to initial or finu]‘ congling periods in
order to have an optimal transfer from one planet to another. For some planets
such as Mars or Venus the optimal trinsfer during aﬁy given opposition (the trans-
for requiring the lowest total delta v for any launch and arrival dates during the
opposition) will he a two impulse transfér. Tor other pl:xlmcts é\\éh as Mercury an
optinum rendezvous will generally require three impulses,  An approximate first
order theory of the oi)tinmm trénsfer to any planet during any opposition has heen
givcﬁ by Marchal, Nuﬁwrical cnlculutio.ns indicntc that this first order theory is
sufficient to be used td determine initial conditions for numer}ic:xl processces to find
the true optimum but is n.ét sufficiently accurate to he a good approximaticn to the
true non-lincar minimum,. Numerical caleulations of optimum multipl'e impulse
transfer from the carth to other plancts have heen carried out by Lion, Doll and
Gobetz. These ~alculations shbw that mid coursé burns can be wed to open up
launch windows, aﬁd for pl:meté; such as Mercury to Si{{l)ifiQﬂl]tl)’ reduce the delta v

required for rendezvous missions,

11.2 Power Limited Trajcclories

Many calculations have been made of optimum low thrust trajectorics between
various plancts, These optimum trajectories must at the present time be found by
numerical mcthods as nonc of the approximate analytic theories have proven suffi-

ciently accurate, Several fairly efficient numerical techniques have been developed
Y }




angd such trajectories can be routinely ealeulated for arbitrary launch and arrival
dates. Thege trajectorics have been ealeulated for v:‘xribus assumptions including
constani power, constant thrust, constanl aceeleration, constant specific impulse
and either solar clectric or nuclear electric power supplics. The tj\q)icayl pralcticc‘

is to reduce the n-hody problem to an approximate sequence of two body problemins

as is done for the impulsive case. An approximate theory of the influence of the
departure pl :1_net.‘s gravity on the heliocentric departure t’r:xjectory has been
(lcvc'lopccf by Melbourne and hy Edelbaum by vsing a low order matched vasymptof,ic
expansion, This mmlysis shows that a correction to the hc]ioccntfic trajectory duc
to the plancocentric gravity ficld is necessary, particularly for the larger planets,
The treatnient of the plancocenlric phases depends on whether the energy to escape
fr_om the planet ig provided by a high thrust or a low thrust propulsion system. For
the case where the spuace craft spirals away from the planet under low thrust propul-
sion, the time spent during this escape mancuver must be considered. A refined
analysis of this problem has been deve]opéd by Breakwell and Rauch. For the carly
electric propulsion systems it is generally more desirable to use high thrust systems
to providé the planctary escape and capture propulsion. 1In these cases the afore-
mentioned analysis of Melbourne and Edelbaum should be utilized. If curves of
constant fucl consumption arc plofted agninst launch and arrival dalcs some similari-
ties arc obtained with the corresponding.resultg for high thrust propulsion, One
differcence is that in a low thrust case the fucl consumption generally deereases
monotonically with the total transfer time. I'Iowcvc;j, for any given transfer time,
there is an optimum launch date and the optimum launch dates for low thrust

;
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propulsion tend to be close to those for high thrust propulsion with about the same

transfer times,

11. 3 Swinghys

In onc of Lawden's early papers he considerced was referred to as a perturbo-
tional mancuver, where a space craft on its w@ to Mars would swing by the moon in
order {o pick up some bndd‘ition:xl delta v, for free, from the Moon's gravitatic’inal
field, He found that the delta v that could be added by the mooen was not very large
and this idca was neglected for about 10 years, Even thqn, the idea was not a new
oné, as it had long Lieen Known t:h‘:\t Jupiter could change the encrgy ¢i comets and
causc them to escape permanently from the solar system, In the carly 60's it was
discovered that for round tl‘ij) migsions to the near planets it was often desirable
to usc swingbys of Vemts en route {o Mars or vice versa, 1 was also discovered that
the enormous gravitational ficld of Jupiter couldbc advantageously uged to perform
various missions throughout the s‘oiur sys izm including the grand tour missions,
close solar probes, and probes far out of the ecl;‘ptic plane, Thé ziﬁal_vsis of opti~
mum .éwingby n)issi.ons falls within he general theory of optimal rocket trajectories

treated in this monograph, The annlysis is conducted by using matched agymptotic

expansions as wos the cnse with ]Jl.'mctui‘y escape and arrival trajectories. The
analysis of optimal swingby missions can be carriced oul both for high thrust systems
and low thrust power limited rocket systems. The effect of the swingby is to cause
a discontinuous change in the direction of the primer vector ot the swingby time at

the two ends of the heliocentrie approach and departure trajectories from the planet.
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The angle that the primer vector rotates through is the same as the angle through

which the hyperbola relative to the planet rotates its asymplotic velocity vectors.
It is possible Lo treat both powered and unpowered swingby missions in this fashion.

/

During a power(“.d swingby mission an impulsec is applied at a point c¢lose to the
planct. TFor the powered swingby missions with high thrust it is possible to use
the analysis of transfer between 113’1)crbolic asymptotes treated in the chapter on
inverse squarce foree fields. The analysis of low thrust irajectorics during

swingbys is very similar to the analysis of low thrusi irajeclories during the

approach and departure phases from the terminal planets.




CHAPTER 12: COMBINATION PROPULSION

12,1 Fiéld I'ree Space

Exrly work on low thrust propulsion systems assumed that the low thrust
system would be placed into orbit by a high thruét sysiem and that all subsequent
propulsion would be provided by the low thrust system. Later work on the utili-
zation of low thrust propulsion systems indicated that it was often desirable to
utilize hig‘h thrust in conjunction wit‘h. low thrust for additional mission phases. It
has been found that combinations of high thrust and low thrusi propulsion systems
can ofien provide belter pérf ormmnee than cither system when used ulqne. The
simplest such missions to analyse are missions in field frec spn'ce; i‘he simplest
oi the field irce spncé missions is the problem of changing only velocity., TFor this
mi’ssion the payload with pure high thrust is independent of the mission dxﬁmtion
while the payload with pure low 1.111‘11:51 increases monotonically with mission dura-
tion, JYor mission timcs in the vicinity of the time for which the low thrust and the
high thrust system have the same payload, the combination of both propulsion sys-

tems will provide higher payloads,

The optimum combination load may be described as follows: a high thrust
impulse is first used to accelerate the vehicle to some fraction of the final desired

velocity. Then the low thrust engine is turned on and operates until a later time

\
?

when the power supply is dropped,  After the power supply is dropped, a second

high thrust impulse accelerates only the payload tc the final velocity. For this mode |
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of operation, the payload is independent of the split between the initial and final im-
pulses. It is possible to provide all of the high thrust impulse initially and then con-
tinue with low thrust so ﬂmt the power supply is retained at th:g cnd of the mission,
Alternately, the 10\\." thrust niayhe used first after vvahich the power supply is dropped
and all the high thrust is used at the end, This ]b a speeial result which only applies

to this particular mission, For this esse where the primer vector is constiant in mag-

nitude the benelits of combination propulsion are only significant when the payload is

quite small,

A sccond interesting mission in field {ree space is a {ransfer between two po-
gitions of rest in ficld frce space. Such a transfer may be considered as an approxi-

mation to a fast transfer to the outer plancts with a nuclear electric propulsion system.

The velocities required for fast transfers in this case arc so high that the influence of

grﬁvitational fields and terminal velocities may be neglected. The optimum mode

with pure high thrust is to provide an initial impulse, coast for a given time and then
decelerate at the target position back to zero velocity with a second impulse, In this
case the high thrust ‘pay].oad is a function of the {light time and increase/é monolonically
with the flight time as does the low thrust payload. For short transfer times the pay-
load with the high thrust system will be larger than the payload of the low thrust sys-
tems while for long transfer times the payload with the low thrust system will be larg-
er, Once :igain combination propulsion is advéntagcous in the region where both sys-
tems have about the‘ same performance, The combination mode for this mission is to
first provide :in initial velocity impulse , and then turn on the low thri:st which has an

aceeleration magnitude that decreases linearly with time. The acceleration magnitude
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passes through zero and then increases to its initial acceleration magnitude, A sec-

ond and cqual high thrust impulse is then provided after the power supply has been
dropped. Once again the collll)ix_lation propulsion sysiem can provide appreciable
payload increases where the payload of cither system alone is quile small and about

equal to the payload of the other sysiem.

12,2 Inverse Square IForce Ficlas

In morce complicated gravitational ficlds such as ill\’(il;SC square fields the
difference hetween the maximum and the average values of the primer vector along
the optimuia trajectory maybe much greater than for the cases in field free space.
By utilizing high thrust systems in those regions where the primer vecter has its
maximum values, much greater benelits {rom combination operation are poSsible
than for the missions in field free space., 1If the inverse sqﬁare ficld is a sirong field
then the analysis of Chapter 7 may be used for the low thrust phases of the mission.,
The 4high thrust phases may use the analysis in Chapter 9, Since the high thrust will
be uscd impalsively the low thrust system may he assumed to he on all the time except
possibly at the {inal impulse before which the power supply will be dropped. If there
is more than onc high thrust impulse it might he :\dvlrznmgeous to drop porticns of the
low thrust power supply during the mission. This will also be true if the payload for
the low thrust poﬂion of tile syétcm becomes very small so that optimal staging of
the low thrusi power supply becomes desivable, The optimal mission modes in inverse
square ficlds bccome very complicdted and in different regions different combinations

and sequences of low thrust and high thrust become optimal, Tt is nccessary to assume

different modes and check the local optimality by caleulating the primer vector in order
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to determine the local ‘olpt'.i.mu. | These local optima must then be compared by deter-
mining which of the different modes tends to lead to the absolute minimum. The mis-
sion that has heen analysed in most detail is escape from an inverse square ficld with
a given hyperbolic velocity, The optimum mode for this m'is."sib.).ihas generally been
found to be an initial period of low thrust whi C]I‘l increases the semi-major axis of the
initial circular orbit and also increases the eccentricity. At the end of the first low
thrust phase the vehicle will be in an elliptic orbit, usually with a minimal allowable
periapsis radius and a fairly high apoopsis radius. At this point a high thrust impulse
is applied at periapsis to accelerate the vehicle beyond escape encrgy. A second pe-
riod of low {hrust may then be used if the final desired hyperbolic velocily is fairly
large. )

Tor transfer between co-planer, co-axinl eiipses the optimum mode may re-
quiré from zero to two initial impulses, A second impulse, if it occurs, being given
at the second apsis of the {irst transfcr clipse, And there may also be from zero to
two terminal impulsc.é. Usually, there will be no more than two high thrust impulscs
in combin:nticﬁ with the low thrust system, althoué;h, pccasionany threc impulses may
be requircd. Yor the cases with "nvo high thrust impulses, both impulses might occor
at the heginning, one may occur at the beginning and one at the ead, or both impulses

may occur at the end depending upon the particular initial and final orbits.
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PROBLEMS

A body moves in a ceniral force field where the force is directed towards
the origin and is proportional to the distance from the origin, What shape
does an unpowered orbit have in such a force field? How many periapses
and apeapsides are there in one revolution? What is the period of the orbit?
(Rectangular coordinates are suggested for this and the following iwo/prob-

Jems.,)

sstme that the optimum jmpulsive transfer between a circular orbit and
a coplanar elliptic orbit in the above force field requires two tangential
impulses at the apsides.  What is {the minimum A V required for transfer
from a circular {o an clliptic orbit? Docs the transfer to the apoapsis ox
to the periapsis require less fuel? Both the periapsis and the apoapsis of
the ellipse may be either larger or smaller than the radius of the circular
orbit, ’

Derive the optimum thrust program for a power-iimited vehicle in the
lincar central force field of Problem 1. Express thiz program in terms
of the initial vilucs of the Lagrange muttipliers and the time by integrating
the Buler-Lagrange equalions, ‘

A power-limited vehicele is moving along the x axis towards the y axis in
field-free space. What is the minimum J to transfer from velocity u® and
position x° to a final velocity vy dirceted along the y axis in the time 11 ?
Whné, is the optimum value of y at t1 for this J? What is the optimum value
of x7?

Synethesize the optimal control for transfer from any state to the final
state of problem 4.
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